МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Луганский государственный университет имени Владимира Даля» (ФГБОУ ВО «ЛГУ им. В. Даля»)

Северодонецкий технологический институт Кафедра информационных технологий, приборостроения и электротехники

УТВЕРЖДАЮ: Врио. директора СТИ (филиал) ФГБОУ ВО «ЛГУ им. В. Даля» Ю.В. Бородач (поднись) 2024 года

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«

По направлению подготовки: 09.03.02 «Информационные системы и технологии»

«Информационные ситемы и технологии»

Лист согласования РПУД

Рабочая программа учебной дисциплины «
Рабочая программа учебной дисциплины « » разработана в соответствии Федеральным государственным образовательным стандартом высшего образования по направлению подготовки 09.03.02 «Информационные системы в
технологии» утвержденный приказом Министерства науки и высшего образования Российской Федерации от 19 2017 . 926 (
1456 26.11.2020
83 08.02.2021 ., 662 19.07.2022 ., 208 27.02.2023 .).
СОСТАВИТЕЛЬ:
к.т.н., доцент
Рабочая программа дисциплины утверждена на заседании кафедры информационных технологий, приборостроения и электротехники « <u>05</u> » <u>сентября</u> 2024 г., протокол № <u>1</u> .
Заведующий кафедрой ИТПЭВ.Г. Чебан
Переутверждена: «»20г., протокол №
Рекомендована на заседании учебно-методической комиссии Северодонецкого технологического института (филиал) федерального государственного бюджетного образовательного учреждения высшего образования «Луганский государственный университет имени Владимира Ладя» « 16 » сентября 2024 г. протокод № 1

. ., 2024 г.

© ФГБОУ ВО «ЛГУ им. В. Даля» СТИ (филиал), 2024 г.

Председатель учебно-методической комиссии СТИ (филиал) ФГБОУ ВО «ЛГУ им. В.Даля»

______ Ю.В. Бородач

Структура и содержание дисциплины

1. Цели и задачи дисциплины, ее место в учебном процессе

Дискретная математика представляет собой один из элементов фундамента образования студента IT направления, необходимого для изучения специальных дисциплин.

Цель изучения дисциплины — овладение студентами необходимым математическим аппаратом, помогающим анализировать, моделировать, программировать, решать прикладные задачи.

Задачи: развитие логического и алгоритмического мышления студентов; овладение студентами методами исследования и алгоритмами решения математически формализованных задач; выработка у студентов навыка самостоятельно расширять свои математические знания, умения ориентироваться в потоке научной и технической информации; повышение общего уровня математической культуры; формирование фундаментальных систематизированных знаний.

2. Место дисциплины в структуре ООП ВО. Требования к результатам освоения содержания дисциплины

Дисциплина «Дискретная математика» входит в блок дисциплин части учебного плана, формируемой участниками образовательных отношений.

Основывается на базе дисциплин: элементарная математика (школьный курс математики).

Является основой для изучения следующих дисциплин: математический анализ, теория вероятностей и математическая статистика, базы данных, технологии обработки информации, архитектура информационных систем и облачных технологий, web-программирование и web-дизайн, кроссплатформенное программирование.

3. Требования к результатам освоения содержания дисциплины

Студенты, завершившие изучение дисциплины «Дискретная математика», должны

знать: основные положения теории множеств, математической логики, комбинаторики, теории графов, теории конечных автоматов, элементы теории алгоритмов; основные алгоритмы решения типовых математических задач;

уметь: использовать методы теории множеств, математической логики, комбинаторики, теории графов, теории конечных автоматов, теории алгоритмов для анализа и моделирования реальных процессов в условиях профессиональной деятельности; использовать основные приёмы обработки данных; решать типовые задачи; строить и исследовать простейшие математические модели; обращаться к информационным системам (Интернет, справочная и другая математическая литература) для пополнения и уточнения математических знаний;

владеть навыками: математическими понятиями и символами для выражения количественных и качественных отношений, математическими

методами и алгоритмами в приложениях к IT наукам.

Перечисленные результаты образования являются основой для формирования следующих компетенций (в соответствии с ФГОС ВО и требованиями к результатам освоения основной профессиональной образовательной программы (ОПОП ВО):

универсальных:

УК-1 способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач;

4. Структура и содержание дисциплины

4.1. Объем учебной дисциплины и виды учебной работы

Объем часов (з.е.)			e.)
Вид учебной работы	Очная форма	Очно-	Заочная
Вид ученой расоты		заочная	форма
		форма	
Объем учебной дисциплины (всего)	108	-	108
	(3 з.е.)		(3 з.е.)
Обязательная аудиторная учебная нагрузка		-	
дисциплины (всего)	68		12
в том числе:			
Лекции	34	-	6
Семинарские занятия	1	-	-
Практические занятия	34	-	6
Лабораторные работы	-	-	-
Курсовая работа (курсовой проект)	-	-	-
Индивидуальное задание	18		18
Самостоятельная работа студента (всего)	40	-	96
Форма аттестации	зачет	-	зачет

4.2. Содержание разделов дисциплины

Семестр 2

Тема 1. Теория множеств

Понятия множества, подмножества. Собственные и несобственные подмножества. Пустое и универсальное множества. Равные множества. Операции над множествами (объединение, пересечение, разность, симметрическая разность, дополнение). Свойства операций. Диаграммы Эйлера-Венна.

Прямое произведение множеств. Бинарные отношения. Свойства бинарных отношений. Отношения эквивалентности и порядка. Разбиение и фактор-множество. Условия минимальности, обрыва убывающих цепей и индуктивности.

Отображения (функции). Свойства отображений. Инъективные, сюръективные и биективные отображения. Алгебраические операции. Изоморфные отображения.

Мощность множества (кардинальные числа). Эквивалентные

множества. Счетные множества. Сравнение мощностей. Мощность континуум. Теорема Кантора-Бернштейна. Действия над кардинальными числами.

Тема 2. Математическая логика

Парадоксы теории множеств. Понятие высказывания. Операции над высказываниями (отрицание, конъюнкция, дизъюнкция, импликация, эквивалентность). Формулы логики высказываний. Виды формул: тавтологии, противоречия, выполнимые формулы. истинности. Равносильности логики высказываний. Законы логики. Совершенные нормальные дизъюнктивные (конъюнктивные) формы. Алгоритм преобразования произвольной формулы алгебры высказываний к виду СНДФ и СНКФ. Полные системы логических связок. Представление формул алгебры логики многочленом Жегалкина. Формальный язык логики высказываний. Понятие предиката. Область истинности предиката. Операции над предикатами (логические и кванторные). Формулы и тавтологии предикатов. Формальный логики язык логики предикатов.

Тема 3. Комбинаторика

Интерпретации и модели.

Правила комбинаторики, основные принципы. Основные комбинаторные формулы (размещения, сочетания, перестановки) с повторением и без повторений. Свойства сочетаний. Бином Ньютона. Полиномиальная формула.

Числа Фибоначчи. Рекуррентные соотношения. Общее и частное решение. Решение линейных рекуррентных соотношений. Производящие функции. Их использование для решения комбинаторных задач.

Тема 4. Теория графов

Понятие граф. Элементы графа. Разновидности графов. Задачи, являющиеся основой теории графов. Операции над графами. Графы и бинарные отношения. Задание графов матрицами переходов. Изоморфизм графов. Цикломатическое число графа. Деревья. Эйлерова характеристика графа. Плоские графы. Теорема Эйлера. Теорема Понтрягина-Куратовского. Теорема о пяти красках. Хроматическое число плоского графа. Графы правильных многогранников.

Алгоритмические задачи теории графов: нахождение кратчайшего пути, построение Эйлерова цикла, максимальные потоки на транспортных сетях.

Тема 5. Теория конечных автоматов

Формальные алгоритмические модели. Конечные автоматы Мили и Мура. Способы задания конечных автоматов. Преобразование конечных строк с помощью конечного автомата. Эквивалентные автоматы. Минимальный автомат. Алгоритм минимизации конечного автомата.

Тема 6. Элементы теории алгоритмов

Машина Тьюринга, как алгоритмическая модель. Машина Поста. Определение и структура, принцип работы. Функции, вычислимые по Тьюрингу. Тезис Тьюринга. Связь между машиной Поста-Тьюринга и конечным автоматом.

Примитивно рекурсивные функции. Тезис Черча. Частично рекурсивные функции.

Нормальные алгоритмы Маркова. Преобразование конечных строк с помощью нормальных алгоритмов Маркова.

4.3. Лекции

			Объем часо	ЭВ
№ п/п	Название темы	Очная форма	Очно- заочная форма	Заочная форма
1	Теория множеств	6	-	1
2	Математическая логика	6	-	1
3	Комбинаторика	4	-	1
4	Теория графов	6	-	1
5	Теория конечных автоматов	4	-	1
6	Элементы теории алгоритмов	8	-	1
Итого):	34	-	6

4.4. Практические (семинарские) занятия

	Объем часов)B
<u>№</u> п/п	Название темы	Очная форма	Очно- заочная форма	Заочная форма
1	Теория множеств	6	-	1
2	Математическая логика		-	1
3	Комбинаторика	4	-	1
4	Теория графов	6	-	1
5	Теория конечных автоматов	4	-	1
6	Элементы теории алгоритмов 8 - 1			
Итого	D:	34	-	6

4.5. Лабораторные работы

Лабораторные работы по дисциплине не предусмотрены.

4.6. Самостоятельная работа студентов

				Объем часо	ОВ
№ п/п	Название темы	Вид СРС	Очная форма	Очно- заочная форма	Заочная форма
1	Теория множеств	подготовка к контрольной работе; выполнение индивидуального задания	8	-	16

2	Можеможимо да та	WO WEST OF 14	6		1.6
2	Математическая логика	подготовка к	6	-	16
		контрольной работе;			
		выполнение			
		индивидуального			
		задания			
3	Комбинаторика	подготовка к	6	-	16
		контрольной работе;			
		выполнение			
		индивидуального			
		задания			
4	Теория графов	подготовка к	6	-	16
		контрольной работе;			
		выполнение			
		индивидуального			
		задания			
5	Теория конечных	подготовка к	6	-	16
	автоматов	контрольной работе;			
		выполнение			
		индивидуального			
		задания			
6	Элементы теории	подготовка к	8	_	16
	_	контрольной работе;		_	10
	алгоритмов				
		выполнение			
		индивидуального			
		задания			
Итого	0:		40	-	96

4.7. Курсовые работы/проекты.

Курсовые работы по дисциплине не предусмотрены.

5. Образовательные технологии

Преподавание дисциплины ведется с применением следующих видов образовательных технологий:

- традиционные объяснительно-иллюстративные технологии, которые обеспечивают доступность учебного материала для большинства студентов, системность, отработанность организационных форм и привычных методов, относительно малые затраты времени;
- технологии проблемного обучения, направленные на развитие познавательной активности, творческой самостоятельности студентов и предполагающие последовательное и целенаправленное выдвижение перед студентом познавательных задач, разрешение которых позволяет студентам активно усваивать знания (используются поисковые методы; постановка познавательных задач);
- технологии развивающего обучения, позволяющие ориентировать учебный процесс на потенциальные возможности студентов, их реализацию и развитие;
- технологии концентрированного обучения, суть которых состоит в создании максимально близкой к естественным психологическим особенностям человеческого восприятия структуры учебного процесса и

которые дают возможность глубокого и системного изучения содержания учебных дисциплин за счет объединения занятий в тематические блоки;

- технологии модульного обучения, дающие возможность обеспечения гибкости процесса обучения, адаптации его к индивидуальным потребностям и особенностям обучающихся (применяются, как правило, при самостоятельном обучении студентов по индивидуальному учебному плану);
- дифференцированного обучения, обеспечивающие технологии возможность создания оптимальных условий для развития интересов и способностей студентов, В TOM числе студентов И образовательными потребностями, что позволяет реализовать в культурнопространстве образовательном университета идею создания возможностей для получения образования
- технологии активного (контекстного) обучения, с помощью которых осуществляется моделирование предметного, проблемного и социального содержания будущей профессиональной деятельности студентов (используются активные и интерактивные методы обучения) и т.д.

Максимальная эффективность педагогического процесса достигается путем конструирования оптимального комплекса педагогических технологий и (или) их элементов на личностно-ориентированной, деятельностной, диалогической основе и использования необходимых современных средств обучения.

6. Формы контроля освоения дисциплины

Текущая аттестация студентов производится в дискретные временные интервалы лектором или преподавателем, ведущим практические занятия по дисциплине в следующих формах:

- фронтальные и индивидуальные опросы;
- контрольные работы;
- защита индивидуальных заданий.

Фонды оценочных средств, включающие типовые индивидуальные задания, контрольные работы, позволяющие оценить результаты текущей и промежуточной аттестации обучающихся по данной дисциплине, помещаются в приложении к рабочей программе в соответствии с «Положением о фонде оценочных средств».

Форма аттестации по результатам освоения дисциплины проходит в форме зачета.

В экзаменационную ведомость и зачетную книжку выставляются оценки по шкале, приведенной в таблице.

Характеристика знания предмета и ответов	Зачеты
Студент глубоко и в полном объёме владеет программным материалом.	зачтено
Грамотно, исчерпывающе и логично его излагает в устной или	
письменной форме. При этом знает рекомендованную литературу,	
проявляет творческий подход в ответах на вопросы и правильно	
обосновывает принятые решения, хорошо владеет умениями и навыками	
при выполнении практических задач.	

C	
Студент знает программный материал, грамотно и по сути излагает его	
в устной или письменной форме, допуская незначительные неточности	
в утверждениях, трактовках, определениях и категориях или	
незначительное количество ошибок. При этом владеет необходимыми	
умениями и навыками при выполнении практических задач.	
Студент знает только основной программный материал, допускает	
неточности, недостаточно чёткие формулировки, непоследовательность	
в ответах, излагаемых в устной или письменной форме. При этом	
недостаточно владеет умениями и навыками при выполнении	
практических задач. Допускает до 30% ошибок в излагаемых ответах.	
Студент не знает значительной части программного материала. При	не зачтено
этом допускает принципиальные ошибки в доказательствах, в трактовке	
понятий и категорий, проявляет низкую культуру знаний, не владеет	
основными умениями и навыками при выполнении практических задач.	
Студент отказывается от ответов на дополнительные вопросы.	

7. Учебно-методическое и программно-информационное обеспечение дисциплины:

а) основная литература:

Белоусов А.И., Дискретная математика : учебник для вузов / А.И. Белоусов, С.Б. Ткачев; под ред. В.С. Зарубина, А.П. Крищенко - М. : Издательство МГТУ им. Н. Э. Баумана, 2015. - 743 с. (Математика в техническом университете) - ISBN 978-5-7038-3783-2 - Текст : электронный // ЭБС "Консультант студента" : [сайт]. - URL : http://www.studentlibrary.ru/book/ISBN9785703837832.html (дата обращения: 01.09.2019). - Режим доступа : по подписке.

Казанский А.А., Дискретная математика. Краткий курс: учебное пособие / Казанский А.А. - М.: Проспект, 2016. - 317 с. - ISBN 978-5-392-19545-9 - Текст : электронный // ЭБС "Консультант студента" : [сайт]. - URL : http://www.studentlibrary.ru/book/ISBN9785392195459.html (дата обращения: 01.09.2019). - Режим доступа : по подписке.

Редькин Н.П., Дискретная математика / Редькин Н.П. - М. : ФИЗМАТЛИТ, 2009. - 264 с. - ISBN 978-5-9221-1093-8 - Текст : электронный // ЭБС "Консультант студента" : [сайт]. - URL : http://www.studentlibrary.ru/book/ISBN9785922110938.html (дата обращения: 01.09.2019). - Режим доступа : по подписке.

Судоплатов С.В., Дискретная математика : учебник / Судоплатов С.В. - Новосибирск : Изд-во НГТУ, 2016. - 280 с. (Серия "Учебники НГТУ") - ISBN 978-5-7782-2820-7 - Текст : электронный // ЭБС "Консультант студента" : [сайт]. - URL : http://www.studentlibrary.ru/book/ISBN9785778228207.html (дата обращения: 01.09.2019). - Режим доступа : по подписке.

б) дополнительная литература:

Васильева А.В., Дискретная математика: учеб. пособие / Васильева А.В. - Красноярск: СФУ, 2016. - 128 с. - ISBN 978-5-7638-3511-3 - Текст: электронный // ЭБС "Консультант студента": [сайт]. - URL: http://www.studentlibrary.ru/book/ISBN9785763835113.html (дата обращения: 01.09.2019). - Режим доступа: по подписке.

Гладков Л.А., Дискретная математика : учебник / Под ред. В.М. Курейчика. - М. : ФИЗМАТЛИТ, 2014. - 496 с. - ISBN 978-5-9221-1575-9 - Текст : электронный // ЭБС "Консультант студента" : [сайт]. - URL : http://www.studentlibrary.ru/book/ISBN9785922115759.html (дата обращения: 01.09.2019). - Режим доступа : по подписке.

Истомин Л. Ф. Графы и сети. Элементы теории, алгоритмы, применение [Текст]: учеб. пособие / Л. Ф. Истомин, В. К. Зайко; М-во образования и науки Украины, Восточноукр. нац. ун-т им. В. Даля. - Луганск: [Изд-во ВНУ им. В. Даля], 2003. - 187 с.

Истомин Л. Ф. Логические основы систем управления [Текст] : учеб. пособие / Л. Ф. Истомин, В. К. Зайко, С. М. Танченко ; М-во образования и науки Украины, Восточноукр. нац. ун-т им. В. Даля. - Луганск : Изд-во ВНУ им. В. Даля, 2005. - 322 с.

Коршунов Ю. М. Математические основы кибернетики [Текст] : учеб. пособие / Ю. М. Коршунов. - 3-е изд., перераб. и доп. - М. : Энергоатомиздат, 1987. - 496 с.

Новиков Ф. А. Дискретная математика для программистов [Электронный ресурс] : учебное пособ. для студентов вузов, обуч. по направл. подготовки специальности "Информатика и вычислительная техника" / Ф. А. Новиков. - 3-е изд. - СПб. : Питер, 2009. - 384 с.

Плотников А. Д. Дискретная математика [Текст] : учеб. пособие / А. Д. Плотников. - М. : Новое знание, 2005. - 288 с.

Сачков В. Н. Комбинаторные методы дискретной математики [Текст] / В. Н. Сачков. - М.: Наука, 1977. - 319 с.

Яблонский С.В. Введение в дискретную математику [Текст] : учеб. пособие / С. В. Яблонский. - М. : Наука, 1979. - 272 с.

в) методические указания:

Конспект лекций по дискретной математике для студентов 1 курса направления подготовки 01.03.02. — «Прикладная математика и информатика» очной и заочной форм обучения [Электронный ресурс] / авт.-сост. Е. Ю. Чалая. - Луганск : ЛНУ им. В. Даля, 2019. - 167 с.

Методические указания к выполнению индивидуального задания по дисциплине «Дискретная математика» для студентов 1 курса направления 01.03.02. — «Прикладная математика и информатика» очной и заочной форм обучения [Электронный ресурс] / сост. Е. Ю. Чалая. - Луганск : ЛНУ им. В. Даля, 2019. - 32 с.

Методические указания к практическим занятиям по дисциплине «Дискретная математика» для студентов 1 курса направления подготовки «Прикладная математика и информатика» очной и заочной форм обучения [Электронный ресурс] / сост. Е. Ю. Чалая. - Луганск : ЛНУ им. В. Даля, 2019. - 48 с.

Методические указания к самостоятельной работе студентов по дисциплине «Дискретная математика» для студентов 1 курса направления 01.03.02. — «Прикладная математика и информатика» очной и заочной форм

обучения [Электронный ресурс] / сост. Е. Ю. Чалая. - Луганск : ЛНУ им. В. Даля, 2019. - 51 с.

г) интернет-ресурсы:

Министерство образования и науки Российской Федерации – http://минобрнауки.рф/

Федеральная служба по надзору в сфере образования и науки – http://obrnadzor.gov.ru/

Министерство образования и науки Луганской Народной Республики – https://minobr.su

Народный совет Луганской Народной Республики – https://nslnr.su

Портал Федеральных государственных образовательных стандартов высшего образования – http://fgosvo.ru

Федеральный портал «Российское образование» – http://www.edu.ru/

Информационная система «Единое окно доступа к образовательным ресурсам» – http://window.edu.ru/

Федеральный центр информационно-образовательных ресурсов – http://fcior.edu.ru/

Электронные библиотечные системы и ресурсы

Электронно-библиотечная система «Консультант студента» – http://www.studentlibrary.ru/cgi-bin/mb4x

Электронно-библиотечная система «StudMed.ru» — https://www.studmed.ru Информационный ресурс библиотеки образовательной организации Научная библиотека имени А. Н. Коняева — https://www.studmed.ru

8. Материально-техническое обеспечение дисциплины

Освоение дисциплины «Дискретная математика» предполагает использование академических аудиторий, соответствующих действующим санитарным и противопожарным правилам и нормам.

Прочее: рабочее место преподавателя, оснащенное компьютером с доступом в Интернет.

Программное обеспечение:

Функциональное назначение	Бесплатное программное обеспечение	Ссылки
Офисный пакет	Libre Office 6.3.1	https://www.libreoffice.org/ https://ru.wikipedia.org/wiki/LibreOffice
Операционная система	UBUNTU 19.04	https://ubuntu.com/ https://ru.wikipedia.org/wiki/Ubuntu
Браузер	Firefox Mozilla	http://www.mozilla.org/ru/firefox/fx
Браузер	Opera	http://www.opera.com

Почтовый клиент	Mozilla Thunderbird	http://www.mozilla.org/ru/thunderbird
Файл-менеджер	Far Manager	http://www.farmanager.com/download.php
Архиватор	7Zip	http://www.7-zip.org/
Графический редактор	GIMP (GNU Image Manipulation Program)	http://www.gimp.org/ http://gimp.ru/viewpage.php?page_id=8 http://ru.wikipedia.org/wiki/GIMP
Редактор PDF	PDFCreator	http://www.pdfforge.org/pdfcreator
Аудиоплейер	VLC	http://www.videolan.org/vlc/

Паспорт фонда оценочных средств по учебной дисциплине «Дискретная математика»

Перечень компетенций (элементов компетенций), формируемых в результате освоения учебной дисциплины

№ п/п	Код контролируемой компетенции	Формулировка контролируемой компетенции	Контролируемые темы учебной дисциплины	Этапы формирования (семестр изучения)
1	УК-1	способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач	Тема 1. Теория множеств Тема 2. Математическая логика Тема 3. Комбинаторика Тема 4. Теория графов Тема 5. Теория конечных автоматов Тема 6. Элементы теории алгоритмов	начальный (2)

Показатели и критерии оценивания компетенций, описание шкал оценивания

№ п/п	Код контролируемой компетенции	Показатель оценивания (знания, умения, навыки)	Контролируемые темы учебной дисциплины	Наименование оценочного средства
1	УК-1	Знать: основные	Тема 1.	Фронтальные и
		положения теории	Тема 2.	индивидуальные
		множеств,	Тема 3.	опросы;
		математической логики,	Тема 4.	контрольные
		комбинаторики, теории	Тема 5.	работы;
		графов, теории конечных	Тема 6.	индивидуальные
		автоматов, элементы		задания,
		теории алгоритмов;		промежуточная
		основные алгоритмы		аттестация
		решения типовых		(зачет)
		математических задач;		
		Уметь: использовать		
		методы теории		
		множеств,		
		математической логики,		

комбинаторики, теории графов, теории конечных автоматов, теории алгоритмов для анализа моделирования реальных процессов в условиях профессиональной деятельности; использовать основные обработки приёмы данных; решать типовые строить задачи; исследовать простейшие математические модели; обращаться информационным системам (Интернет, справочная другая математическая литература) для пополнения и уточнения математических знаний; Владеть: математическими понятиями и символами ДЛЯ выражения количественных качественных отношений, математическими методами и алгоритмами в приложениях к IT наукам.

Фонды оценочных средств по дисциплине «Дискретная математика»

Вопросы для фронтальных и индивидуальных опросов:

Тема 1. Теория множеств.

- 1. Понятие множества. Почему можно сформулировать только интуитивное определение?
- 2. Равные множества. Виды множеств. Способы задания множеств.
- 3. Понятие пустого множества.
- 4. Понятие подмножества. Собственные и несобственные подмножества.
- 5. Теорема о количестве всех подмножеств у конечного множества.
- 6. Свойства отношения включения.
- 7. Универсальное множество.
- 8. Операции над множествами (объединение, пересечение, разность, дополнение), их свойства.
- 9. Операция дополнения множества до универсального.
- 10. Свойства операций над множествами. Законы де Моргана.
- 11. Диаграммы Эйлера-Венна.
- 12. Принцип двойственности в теории множеств.
- 13. Прямое произведение множеств. Определение, свойства. Декартов квадрат.
- 14. Понятие бинарного отношения. Первая и вторая проекции, график бинарного отношения.
- 15. Представление бинарных отношений графами.
- 16. Операции над бинарными отношениями.
- 17. Свойства бинарных отношений.
- 18. Бинарные отношения эквивалентности и порядка.
- 19. Фактор-множество.
- 20. Понятие разбиения множества. Теорема о связи фактор-множества и разбиения.
- 21. Бинарное отношение порядка. Свойства, разновидности.
- 22. Понятие функционального отношения (или функции). Область определения. Множество значений функции. Равные функции.
- 23. Какие функции называются инъективными, сюрьективными.
- 24. Понятие биекции. Примеры.
- 25. Понятие алгебраической операции. Свойства. Примеры.
- 26. Частично упорядоченные множества.
- 27. Эквивалентность условий минимальности, обрыва убывающих цепей и индуктивности.
- 28. Изоморфные отображения.
- 29. Мощность множества. Мощность конечного множества. Сравнение мощностей.
- 30. Понятие эквивалентных (равномощных) множеств.
- 31. Теорема о мощности промежуточного множества.
- 32. Теорема Кантора-Бернштейна. Следствия.

- 33. Теорема о мощности множества всех подмножеств данного множества.
- 34. Понятие счетного множества. Теоремы о счетных мощностях.
- 35. Как можно доказать несчетность множества точек отрезка [0,1]?
- 36. Мощность континуум. Проблема континуум в рамках теории множеств.
- 37. Кардинальные числа. Арифметика кардинальных чисел.
- 38. Аксиома выбора и эквивалентные ей утверждения.
- 39. Внутренняя противоречивость теории множеств. Парадоксы.

Тема 2. Математическая логика.

- 1. Понятие высказывания. Элементарное высказывание. Значение высказывания.
- 2. Логические операции над высказываниями.
- 3. Свойства операций над высказываниями.
- 4. Понятие формулы алгебры логики.
- 5. Виды формул (тождественно истинные, тождественно ложные, выполнимые).
- 6. Построение таблиц истинности.
- 7. Законы логики (тавтологии).
- 8. Определения СНДФ (СНКФ). Существование и способы построения.
- 9. Равносильность формул. Определение и способы доказательства.
- 10. Простейшие равносильности в логике высказываний.
- 11. Полные системы логических связок.
- 12. Многочлен Жегалкина. Существование и способы построения.
- 13. Что представляют собой операции: штрих Шеффера, стрелка Пирса, сложение по модулю 2?
- 14. Способы доказательства. Правило цепного заключения, закон контрапозиции, доказательства от противного.
- 15. Понятие предиката. Логические операции над предикатами.
- 16. Кванторные операции над предикатами. Свободные и связные переменные.
- 17. Что называется областью истинности предиката?
- 18. Тождественно истинные, тождественно ложные и выполнимые предикаты.
- 19. Формулы логики предикатов.
- 20. Равносильные предикаты.
- 21. Основные тавтологии логики предикатов.
- 22. Формальный язык логики высказываний (принципы построения). Алфавит, аксиомы, правило вывода.
- 23. Теоремы формальной теории.
- 24. Теоремы о формальной теории. Свойства теории. Метатеоремы.
- 25. Основные понятия о формализации логики предикатов.
- 26. Свойства теорий первого порядка.
- 27. Понятие об интерпретации и модели в формальной логике предикатов.

Тема 3. Комбинаторика.

- 1. Что изучает комбинаторика?
- 2. Какая задача считается комбинаторной?
- 3. Основные правила комбинаторики.
- 4. Основные комбинаторные формулы (размещения, сочетания, перестановки) с повторением и без повторений.
- 5. Свойства сочетаний.
- 6. Бином Ньютона. Полиномиальная формула.
- 7. Числа Фибоначчи. Рекуррентные соотношения.
- 8. Использование рекуррентных соотношений для решения комбинаторных задач.

Тема 4. Теория графов.

- 1. Задачи, послужившие основой теории графов.
- 2. Понятие графа. Основные элементы графа (вершины, дуги и ребра, пути и цепи, циклы, степень вершин, тупики, перешейки, связность, компоненты связности).
- 3. Описание графа матрицей смежности.
- 4. Разновидности графов.
- 5. Операции над графами.
- 6. Изоморфизм графов. Связь между матрицами смежности у изоморфных графов.
- 7. Необходимое и достаточное условие существования эйлерова цикла в симметрическом связном графе.
- 8. Алгоритмические задачи, решаемые в рамках теории графов.
- 9. Какой граф называется сетью?
- 10. Алгоритм Дейкстры для нахождения на графе кратчайшего пути (решение и обоснование).
- 11. Алгоритм Форда-Фалкерсона для нахождения максимальной величины потока на транспортных сетях (решение и обоснование).
- 12. Цикломатическое число графа, его свойства и приложения. Виды циклов на графах.

Тема 5. Теория конечных автоматов.

- 1. Описание абстрактных и материальных моделей с помощью понятия конечного автомата.
- 2. Принцип «черного ящика». Формальные алгоритмические модели.
- 3. Определение конечного автомата. Основные множества и функции.
- 4. Конечные автоматы Мили и Мура.
- 5. Способы задания конечных автоматов.
- 6. Преобразование конечных строк с помощью конечного автомата.
- 7. Какие внутренние состояния автомата называются эквивалентными?
- 8. Эквивалентные автоматы.
- 9. Проблема минимизации конечного автомата в реальных устройствах.
- 10. Минимальный автомат.

11. Алгоритм минимизации конечного автомата.

Тема 6. Элементы теории алгоритмов.

- 1. Интуитивное понятие алгоритма. Свойства. Реализация.
- 2. Формальные алгоритмические модели. Разновидности и предназначение.
- 3. Абстрактные машины Поста, Тьюринга. Исторические аспекты.
- 4. Машина Тьюринга. Строгое определение. Устройство, принцип работы, формальное описание.
- 5. Гипотеза Тьюринга. Функции, вычислимые по Тьюрингу.
- 6. Связь машины Тьюринга с конечными автоматами и реальными вычислительными устройствами.
- 7. Примитивно рекурсивные функции, как формальная алгоритмическая модель. Тезис Черча.
- 8. Частично рекурсивные функции. Вычислимость по Черчу.
- 9. Нормальные алгоритмы Маркова. Определение. Основные концепции.
- 10. Преобразование конечных строк с помощью нормальных алгоритмов Маркова. Вычислимость по Маркову.
- 11. Эквивалентность различных формальных моделей.

Критерии и шкала оценивания по оценочному средству «фронтальный и индивидуальный опрос»

Шкала оценивания	Критерий оценивания				
отлично (5)	Студент глубоко и в полном объёме владеет программным				
	материалом. Грамотно, исчерпывающе и логично его излагает в				
	устной или письменной форме. При этом знает рекомендованную				
	литературу, проявляет творческий подход в ответах на вопросы и				
	правильно обосновывает принятые решения, хорошо владеет				
	умениями и навыками при выполнении практических задач.				
хорошо (4)	Студент знает программный материал, грамотно и по сути				
	излагает его в устной или письменной форме, допуская				
	незначительные неточности в утверждениях, трактовках,				
	определениях и категориях или незначительное количество				
	ошибок. При этом владеет необходимыми умениями и навыками				
	при выполнении практических задач.				
удовлетворительно	Студент знает только основной программный материал,				
(3)	допускает неточности, недостаточно чёткие формулировки,				
	непоследовательность в ответах, излагаемых в устной или				
	письменной форме. При этом недостаточно владеет умениями и				
	навыками при выполнении практических задач. Допускает до 30%				
	ошибок в излагаемых ответах.				
неудовлетворительно	Студент не знает значительной части программного материала.				
(2)	При этом допускает принципиальные ошибки в доказательствах, в				
	трактовке понятий и категорий, проявляет низкую культуру				
	знаний, не владеет основными умениями и навыками при				
	выполнении практических задач. Студент отказывается от ответов				
	на дополнительные вопросы				

Контрольные работы:

Типовые варианты контрольных работ

Тема 1. Теория множеств.

Вариант 1

1) Даны множества $N_1 = \{1,3,5\}$, $N_2 = \{5,4,2,1\}$, $N_3 = \{5,9,3,7,1\}$, $N_4 = \{2,6\}$.

Найти: $(N_1 \times N_2) \cap (N_3 \times N_4)$; $(N_1 \cap N_3) \times (N_2 \cap N_4)$.

- 2) Доказать тождество: $A \cap (B \setminus C) = (A \cap B) \setminus (A \cap C)$.
- 3) Доказать, что два множества равны тогда и только тогда, когда их пересечение и объединение совпадают.
- 4) На множестве $N \times N$ задано бинарное отношение ρ следующим образом: $\langle (a,b),(c,d) \rangle \in \rho \leftrightarrow a+d=b+c$. Доказать, что ρ является отношением эквивалентности на множестве $N \times N$ и найти фактор-множество.

Тема 2. Математическая логика.

Вариант 1

1) Является ли данная формула тавтологией?

 $(P_1 \rightarrow (P_2 \rightarrow P_3)) \rightarrow (P_1 \rightarrow P_2) \rightarrow (P_1 \rightarrow P_3).$

2) Построить для данной формулы СНДФ (по теореме) и СНКФ:

 $\overline{(x \land (y \lor z))} \rightarrow ((x \land y) \lor z).$

3) Разложить функцию по переменной x_1 :

 $(x_1 \vee \overline{x_2}) \leftrightarrow (x_2 \rightarrow x_1)$.

- 4) Построить для функции $x \lor y \lor z$ многочлен Жегалкина. Проверить свойства линейности и монотонности.
- 5) Проверить полноту системы функций $\{x + y + z, xy, 0, 1\}$.

Тема 3. Комбинаторика.

Вариант 1

- 1. В вазе стоят 10 красных и 4 розовых гвоздики. Сколькими способами можно выбрать 3 цветка из вазы?
- 2. Найти общее решение линейного рекуррентного соотношения: f(n+2) = 5 f(n+1) 4 f(n).
- 3. Найти последовательность чисел, для которой данная функция является производящей: $f(x) = \frac{1}{x+1}$.

4. Имеется 6 монет по 2 копейки и 5 монет по 1 копейке. Сколькими способами можно заплатить сумму в 12 копеек?

Критерии и шкала оценивания по оценочному средству «контрольная работа»

Шкала оценивания	Критерий оценивания	
5	Контрольная работа выполнена на высоком уровне (правильные	
	ответы даны на 90-100% вопросов/задач)	
4	Контрольная работа выполнена на среднем уровне (правильные	
	ответы даны на 75-89% вопросов/задач)	
3	Контрольная работа выполнена на низком уровне (правильные	
	ответы даны на 50-74% вопросов/задач)	
2	Контрольная работа выполнена на неудовлетворительном	
	уровне (правильные ответы даны менее чем на 50%)	

Варианты индивидуальных заданий:

Типовые варианты индивидуальных заданий

Тема 1. Теория множеств.

Вариант 1.

- 1. Известно, что из 60 туристов знают немецкий язык -15, французский -20, английский -25, немецкий и французский -5, немецкий и английский -5, французский и английский -10, все три иностранные языки -3. Сколько туристов знают только один из иностранных языков? Сколько не знают ни одного?
- **2.** Доказать тождество: $A \setminus B = A \setminus (A \cap B)$.
- **3.** Доказать, что $A \subset B \cup C \Leftrightarrow A \cap \overline{B} \subset C$.
- **4.** Даны множества $A = \{o, n, p, c\}$ и $B = \{p, c, t\}$. Найти $A \times B$, $B \times A$, $A \setminus B$, $A \times B \cap B \times A$, $B \cup (A \setminus B)$.
- **5.** Доказать, что для всех натуральных чисел выполняется утверждение: $(2n-1)^3 (2n-1) : 24$.
- **6.** Пусть $A = \{2,3,4\}$, $B = \{4,5,6,9,12,16\}$. Опишите с помощью графа и таблицы отношение $xRy \Leftrightarrow x \in A$, $y \in B$, $y = x^2$.
- **7.** Верно ли высказывание: если отношения R и S рефлексивны, то отношение $R \cap S$ рефлексивно.
- **8.** Используя понятие мощности конечного множества, равномощности, решить задачу на доказательство. Доказать, что конечное множество не может быть равномощным своему подмножеству.

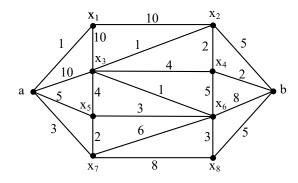
Тема 2. Математическая логика.

Вариант 1.

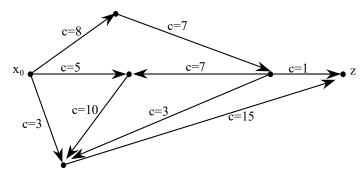
1. Доказать тавтологии:

- a) $P_1 \to (P_2 \to P_1)$;
- 6) $(P_1 \to (P_2 \to P_3)) \to (P_1 \to P_2) \to (P_1 \to P_3)$.
- **2.** Представить формулу $\overline{(x \land (y \lor z))} \rightarrow ((x \land y) \lor z)$ в СКНФ и многочленом Жегалкина.
- **3.** Представить формулу $((A \to B) \to \overline{A}) \to (A \to (B \land A))$ в СДНФ и многочленом Жегалкина.
- 4. Найти множество истинности двуместных предикатов:
 - a) $x > 1 \land y < 1$;
 - 6) $x > 1 \rightarrow y < 1$.

Тема 3. Комбинаторика.


Вариант 1.

- 1. Сколькими способами можно выбрать 4 согласные и 3 гласные буквы в слове «автоматический»? Сколько слов можно получить, меняя порядок букв в этом слове? Та же задача, но если буквы «с» «к» стоят рядом, не стоят рядом? Сколько можно получить слов, оканчивающихся буквами "ий"?
- **2.** Сколькими способами можно выбрать 3 согласные и 2 гласные в слове "авторизованный"? Сколько слов можно получить, меняя порядок букв в этом слове? Та же задача, но если после буквы "ы" должна идти буква «й»? Та же задача, если две буквы «и» стоят радом, не стоят рядом?
- **3.** Сколькими способами можно разделить 40 карандашей между 8 учениками? Та же задача, но если каждый должен получить не менее 2-х карандашей?
- **4.** Сколькими способами можно разделить 24 тетради между тремя студентами? Та же задача, но если каждый должен получить не менее 4-х тетрадей?
- **5.** Сколькими способами можно разделить колоду из 36 карт поровну между тремя игроками.
- **6.** Сколькими способами 20 различных книг можно поделить поровну между 4-мя студентами?


Темы 4, 5, 6. Графы, автоматы, алгоритмы.

Вариант 1.

1. Дан граф с указанными длинами ребер. Найти в графе путь кратчайшей длины, соединяющий вершину a с вершиной b.

2. Дан граф транспортной сети, $_{x_0}$ — вход, $_z$ — выход, $_{c(u)}$ — пропускная способность дуги. Используя алгоритм Форда-Фалкерсона, найти поток наибольшей величины.

3. По матрице смежности построить граф, определить его характеристики (связность, число компонент связности, длина максимального цикла, эйлерова характеристика).

$$A = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \end{pmatrix}$$

4. Найти минимальную форму автомата и граф переходов минимальной формы:

	ν		ξ	
S	$a_{\!\scriptscriptstyle 0}$	a_{l}	a_{0}	$a_{\!\scriptscriptstyle 1}$
1	2	2	1	0
2	3	3	1	0
3	4	4	1	0
4	4	4	0	1
5	5	6	1	1
6	6	5	1	1

5. Составить программу для машины Тьюринга, вычисляющую значения функции $_{x=2}$.

Критерии и шкала оценивания по оценочному средству «индивидуальные задания»

Шкала оценивания	Критерий оценивания
Зачтено	Правильно решены 90-100% заданий
Не зачтено	Правильно решены менее 90% заданий

Оценочные средства для промежуточной аттестации (зачет)

Типовые вопросы

- 1. Определение числа размещений с повторениями и без повторений. Формулы. Примеры.
- 2. Плоская реализация связного графа. Понятие плоского графа. Эйлерова характеристика плоскости.
- 3. Понятие изоморфизма графов.
- 4. Формальные алгоритмические модели. Машина Поста-Тьюринга. Устройство, принцип работы, формальное описание.
- 5. Правила комбинаторики. Размещения с повторениями и без повторений. Определение, примеры, формулы для вычисления.
- 6. Бинарные отношения. Графические интерпретации бинарных отношений. Операции над бинарными отношениями. Обратное отношение.
- 7. Прямое произведение множеств. Бинарные отношения.
- 8. Функции (отображения). Основные понятия и свойства. Инъективные, сюрьективные и биективные функции.
- 9. Мощность множества. Счетные множества и их свойства.
- 10. Несчетность континуума. Теорема о мощности всех подмножеств произвольного множества. Сравнение мощностей.
- 11. Правила комбинаторики. Перестановки без повторений и с повторениями. Определение, примеры, формулы для вычисления.
- 12. Правила комбинаторики. Сочетания без повторений и с повторениями. Определение, примеры, формулы для вычисления, применение.
- 13.Основные понятия и определения теории графов (вершина, дуга и ребро, путь, цикл, степень вершины, тупик, перешеек, связность, компоненты связности). Описание бинарных отношений графами. Матрицы смежности.
- 14.Задачи, послужившие основой теории графов. Необходимое и достаточное условие существования эйлерова цикла на симметрическом связном графе.
- 15. Цикломатическое число графа, его свойства. Виды циклов. Деревья. Условия, при выполнении которых граф является деревом.
- 16. Формальные алгоритмические модели. Нормальные алгоритмы Маркова. Определение, особенности, основные концепции. Примеры.
- 17.Основные понятия и определения теории конечных автоматов Способы задания конечного автомата.
- 18. Формальные алгоритмические модели. Определение примитивно рекурсивной функции. Тезис Черча.

- 19.Операции над множествами (объединение, пересечение, разность, дополнение), их свойства. Примеры.
- 20.Понятие множества. Виды множеств. Примеры. Способы задания множеств. Равные множества. Пустое множество. Универсальное множество.
- 21.Сколькими способами можно разделить 26 одинаковых тетрадей между тремя студентами? Та же задача, но если каждый должен получить не менее трех тетрадей?
- 22.Сколько различных четырехзначных чисел, делящихся на 4, можно составить из цифр 1, 2, 3, 4, 5, если каждая цифра может использоваться в записи числа несколько раз?
- 23.Сколькими способами можно расставить белые фигуры (2 коня, 2 слона, 2 ладьи, ферзя и короля) на первой линии шахматной доски?
- 24. Составить программу для машины Тьюринга, которая уменьшает число на 1.
- 25.Составить программу для машины Тьюринга, которая выполняет примитивное сложение.

Критерии и шкала оценивания по оценочному средству промежуточный контроль (зачет)

контроль (зачет)	
Характеристика знания предмета и ответов	Зачеты
Студент глубоко и в полном объёме владеет программным материалом.	зачтено
Грамотно, исчерпывающе и логично его излагает в устной или	
письменной форме. При этом знает рекомендованную литературу,	
проявляет творческий подход в ответах на вопросы и правильно	
обосновывает принятые решения, хорошо владеет умениями и навыками	
при выполнении практических задач.	
Студент знает программный материал, грамотно и по сути излагает его	
в устной или письменной форме, допуская незначительные неточности	
в утверждениях, трактовках, определениях и категориях или	
незначительное количество ошибок. При этом владеет необходимыми	
умениями и навыками при выполнении практических задач.	
Студент знает только основной программный материал, допускает	
неточности, недостаточно чёткие формулировки, непоследовательность	
в ответах, излагаемых в устной или письменной форме. При этом	
недостаточно владеет умениями и навыками при выполнении	
практических задач. Допускает до 30% ошибок в излагаемых ответах.	
Студент не знает значительной части программного материала. При	не зачтено
этом допускает принципиальные ошибки в доказательствах, в трактовке	
понятий и категорий, проявляет низкую культуру знаний, не владеет	
основными умениями и навыками при выполнении практических задач.	
Студент отказывается от ответов на дополнительные вопросы.	

Лист изменений и дополнений

№ п/п	Виды дополнений и изменений	Дата и номер протокола заседания кафедры (кафедр), на котором были рассмотрены и одобрены изменения и дополнения	Подпись (с расшифровкой) заведующего кафедрой (заведующих кафедрами)