МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Луганский государственный университет имени Владимира Даля»

«Луганскии государственныи университет имени Владимира Д (ФГБОУ ВО «ЛГУ им. В. Даля»)

Северодонецкий технологический институт Кафедра информационных технологий, приборостроения и электротехники

УТВЕРЖДАЮ:
Врио. директора СТИ (филиал)
ФГБОУ ВО «ЛГУ им. В. Даля»
Ю.В. Бородач
(подпись)
«2024 года

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«Программирование микроконтроллеров для систем управления, сбора и обработки данных»

По направлению подготовки: 11.03.04 Электроника и наноэлектроника

Профиль: Электронные приборы и устройства

Лист согласования РПУД

Рабочая программа учебной дисциплины «
, » по направлению подготовки: 11.03.04 « ») – 26 с.
Рабочая программа учебной дисциплины «
, » разработана в соответствии Федеральным государственным образовательным стандартом высшего образования по направлению подготовки 11.03.04 « », утвержденным приказом Министерства науки и высшего образования Российской Федерации 19 2017 . 927 (
26.11.2020 ., 83 08.02.2021 ., 662 19.07.2022 . и 208 27.02.2023 .)
СОСТАВИТЕЛЬ:
· · ·,
Рабочая программа дисциплины утверждена на заседании кафедры информационных технологий, приборостроения и электротехники « <u>05</u> » <u>сентября</u> 2024 г., протокол № <u>1</u> .
Заведующий кафедрой ИТПЭ В.Г. Чебан
Переутверждена: «»20г., протокол №
Рекомендована на заседании учебно-методической комиссии Северодонецкого технологического института (филиал) федерального государственного бюджетного образовательного учреждения высшего образования «Луганский государственный университет имени Владимира Даля» « <u>16</u> » <u>сентября</u> 2024 г., протокол № <u>1</u> . Председатель учебно-методической комиссии
СТИ (филиал) ФГБОУ ВО «ЛГУ им. В.Даля» Ю.В. Бородач

1. Цели и задачи дисциплины, ее место в учебном процессе

Цель дисциплины — изучение основных принципов и алгоритмов построения программного обеспечения на основе микроконтроллеров для систем управления, сбора и обработки данных.

Задачи: ознакомление студентов со структурой микроконтроллеров, регистрами управления, регистрами ввода-вывода, и другими аппаратными устройствами и их программным управлением для решения задач управления, сбора и обработки данных.

2. Место дисциплины в структуре ООП ВО. Требования к условиям освоения содержания дисциплины

Дисциплина «Программирование микроконтроллеров для систем управления, сбора и обработки данных» относится к циклу профессиональных дисциплин.

Необходимыми условиями для освоения дисциплины являются: знания компонентов электроники, электронных и полупроводниковых приборов и интегральных микросхем; цифровой электроники, физических основ сенсорики, техники измерений, умения проводить измерения физических величин и обработку результатов измерений, микропроцессорной техники.

Содержание дисциплины основано на знаниях дисциплин «Материалы и компоненты электроники», «Специальные разделы физики (физика электронных и полупроводниковых приборов)», «Цифровая электроника», «Физические основы сенсорики», «Микропроцессорная техника» и служит основой для дипломного проектирования.

3. Требования к результатам освоения содержания дисциплины

Код и наименование	Индикаторы достижений	Перечень планируемых
компетенции	компетенции (по	результатов
	реализуемой дисциплине)	
ПК-1. Способен строить	ПК-1.1. Знает	Знать: математическое
простейшие физические и	математическое описание	описание физических
математические модели	физических процессов,	процессов, протекающих в
приборов, схем, устройств и	протекающих в материалах,	материалах из которых
установок электроники и	компонентах и приборах	изготавливаются память и
наноэлектроники	электроники.	микроконтроллеры;
различного	ПК-1.2. Умеет строить	программное обеспечение
функционального	физические и	для микроконтроллеров
назначения, а также	математические модели	AVR; построение
использовать стандартные	приборов, узлов, блоков.	математических моделей
программные средства их	ПК-1.3. Владеет навыками	описывающих работу
компьютерного	компьютерного	параллельных портов ввода-
моделирования	моделирования.	вывода, аналого-цифровое
		преобразование, цифро-
		аналоговое преобразование,
		широтно-импульсные
		модуляторы, шаговые
		двигатели;

		Уметь: строить физические и математические модели узлов и блоков микропроцессорных устройств и микроконтроллеров; Владеть: навыками компьютерного моделирования работы устройств входящих в состав микроконтроллеров; навыками работы с электронными библиотеками и базами данных по моделированию и программированию
ПК-3. Способен выполнять расчет и проектирование электронных приборов, схем и устройств различного функционального назначения в соответствии с техническим заданием с использованием средств автоматизации проектирования	ПК-3.1. Знает принципы конструирования отдельных блоков электронных приборов, систем сбора, обработки данных и управления. ПК-3.2. Умеет проводить оценочные расчеты характеристик электронных приборов. ПК-3.3. Умеет разрабатывать топологию интегральных микросхем. ПК-3.4. Умеет программировать микропроцессоры и микроконтроллеры. ПК-3.5. Владеет навыками подготовки принципиальных и монтажных электрических схем.	Знать: принципы конструирования компараторов, последовательных интерфейсов обмена данными, препроцессора; исполнение ассемблерного кода, для обеспечения работы микроконтроллеров; программную реализацию микропроцессорных систем на базе микроконтроллеров с центральной ЭВМ; Уметь: проводить оценочные расчеты временных интервалов работы микроконтроллеров и составлять программы на языке С++; программировать микропроцессоры и микроконтроллеры на ассемблере и на языке С++; разрабатывать топологию устройств входящих в состав микроконтроллеров и топологию печатных плат микропроцессорных устройств; Владеть: навыками подготовки принципиальных и монтажных электрических схем микропроцессорных систем и устройств на основе микроконтроллеров;

4. Структура и содержание дисциплины

4.1. Объем учебной дисциплины и виды учебной работы

Вид учебной работы		Объем часов (зач. ед.)		
		Очная форма	Заочная форма	
Общая учебная нагрузка (все	ero)	144	144	
		(4 зач. ед)	(4 зач. ед)	
Обязательная аудиторная уч	ебная нагрузка (всего)	72	18	
в том числе:				
Лекции		24	6	
Семинарские занятия		-	-	
Практические занятия		-	-	
Лабораторные работы		46	12	
Курсовая работа (курсовой проект)		-	-	
Другие формы и методы организации образовательного		-	-	
процесса (расчетно-графические работы, групповые				
дискуссии, ролевые игры,	тренинг, компьютерные			
симуляции, интерактивные лекции, семинары, анализ				
деловых ситуаций и т.п.)				
Самостоятельная работа студ	цента (всего)	72	126	
Форма аттестации	Семестр 7	зачет	зачет	
	Семестр 8	зачет	зачет	

4.2. Содержание разделов дисциплины

Семестр 7

Тема 1. Архитектура микроконтроллеров.

Память. Обработка прерываний. Сброс. Спящие режимы микроконтроллера. Таймеры счетчики. Сторожевой таймер. Параллельные порты ввода-вывода. Аналого-цифровое преобразование. Цифро-аналоговое преобразование. Компараторы. Последовательные интерфейсы обмена данными.

Тема 2. Компиляторы и средства разработки.

Программное обеспечение для микроконтроллеров AVR. Программное обеспечение для микроконтроллеров PIC. Программирование целевого устройства.

Тема 3. Язык высокого уровня С.

Основные понятия. Структура программы на языке С. Типы данных. Переменные. Константы. Функции. Подпрограммы. Указатели и адреса переменных. Массивы строки. Операторы ветвления. Цыклические И конструкции. Проверка условий. Стандартные функции ввода-вывода. Директивы препроцессора. Обработка прерываний. Исполнение ассемблерного кода.

Тема 4. Программная реализация работы с внутренними устройствами микроконтроллеров.

Работа с разными типами памяти. Обработка прерываний. Внешний сброс. Вход и выход в спящие режимы микроконтроллера. Программирование таймеров счетчиков. Программирование сторожевого таймера. Работа с параллельными портами ввода-вывода. Аналого-цифровое преобразование. Цифро-аналоговое преобразование. Компараторы. Обмен данных посредством последовательных интерфейсов.

Семестр 8

Тема 5. Программная реализация работы с внешними устройствами микроконтроллера.

Работа с внешней памятью. Внешние аналого-цифровые и цифроаналоговые преобразователи. Внешние компараторы. Светодиодные, газоразрядные и жидкокристаллические модули отображения информации. Светодиодные индикаторы. Клавиатуры. Графопостроители. Широтно-импульсные модуляторы. Шаговые двигатели. Привода электродвигателей. Внешние аналоговые и цифровые сенсоры.

Тема 6. Программная реализация простых устройств на микроконтроллерах.

Электронный термометр на терморезисторе. Электронный термометр на диоде. электронный термометр на термопаре. Электронный фотометр. Электронный пирометр. Электронный тахометр. Электронный аэрометр. Электронный металлодетектор.

Tema 7. Программная реализация сложных устройств на микроконтроллерах.

Электронный вихретоковый дефектоскоп. Ультразвуковой эхолот. Ультразвуковой дефектоскоп. Ультразвуковой толщиномер. Ультразвуковой скоростемер. Ультразвуковой расходомер. Роботизированный солнечный фотометр.

Тема 8. Программная реализация микропроцессорных систем на базе микроконтроллеров с центральной ЭВМ.

Сверлильный станок с числовым программным управлением. Токарный станок с числовым программным управлением. Плазморез с числовым программным управлением. Обрабатывающий центр с числовым программным управлением. Технологическая производственная линия. Метеоцентр. Центр космической погоды.

4.3. Лекции

No	Название темы		Объем часов	
п/п		Очная форма	Заочная форма	
	Семестр 7			
1	Архитектура микроконтроллеров. Часть 1.	2	-	
2	Архитектура микроконтроллеров. Часть 2.	2	1	
3	Компиляторы и средства разработки. Часть 1.	2	-	

4 Компиляторы и средства разработки. Часть 2.	2	-
5 Язык высокого уровня С. Часть 1.	2	-
6 Язык высокого уровня С. Часть 2.	2	1
7 Программная реализация работы с внутренними устройствами микроконтроллеров. Часть 1.	4	-
8 Программная реализация работы с внутренними устройствами микроконтроллеров. Часть 2.	4	-
Семестр 8		
9 Программная реализация работы с внешними устройствами микроконтроллера. Часть 1.	2	-
10 Программная реализация работы с внешними устройствами микроконтроллера. Часть 2.	2	1
11 Программная реализация простых устройств на микроконтроллерах. Часть 1.	2	-
12 Программная реализация простых устройств на микроконтроллерах. Часть 2.	2	1
13 Программная реализация сложных устройств на микроконтроллерах. Часть 1.	2	-
14 Программная реализация сложных устройств на микроконтроллерах. Часть 2.	2	1
15 Программная реализация микропроцессорных систем на базе микроконтроллеров с центральной ЭВМ. Часть 1.	2	-
16 Программная реализация микропроцессорных систем на базе микроконтроллеров с центральной ЭВМ. Часть 2.	4	1
Итого:	24	6

4.4. Практические занятия Не предусмотрены учебным планом.

4.5. Лабораторные работы

№	Название темы Объем часон		м часов
п/п		Очная форма	Заочная форма
	Семестр 7		
1	Электронный термометр на терморезисторе.	4	-
2	Электронный термометр на диоде. электронный термометр на термопаре.	4	1
3	Электронный фотометр.	2	-
4	Электронный пирометр.	2	1
5	Электронный тахометр.	2	-
6	Электронный пиранометр.	2	1
7	Электронный аэрометр.	4	-
8	Электронный металлодетектор.	2	1
	Семестр 8		
9	Электронный вихретоковый дефектоскоп.	4	1
10	Ультразвуковой эхолот.	4	1
11	Ультразвуковой дефектоскоп.	4	1
12	Ультразвуковой толщиномер.	4	1
13	Ультразвуковой скоростемер.	4	1
14	Ультразвуковой расходомер.	4	1
15	Роботизированный солнечный фотометр.	2	2

того:	48	12
-------	----	----

4.6. Самостоятельная работа студентов

No	Название темы	Вид СРС	Объег	м часов
п/п			Очная форма	Заочная форма
	Семестр 7		<u> </u>	1-1
1	Основные понятия. Структура программы на языке С.	Подготовка к лабораторной работе	3	8
		Подготовка к тестированию	3	8
2	Типы данных. Переменные.	Подготовка к лабораторной работе	9	8
2		Подготовка к тестированию	3	8
3	Цифровые отображения Константы.	Подготовка к лабораторной работе	3	8
	Функции.	Подготовка к тестированию	3	8
4	Структура программы на языке С.	Подготовка к лабораторной работе	3	8
		Подготовка к тестированию	5	10
	Семестр 8			
6	Циклические конструкции.	Подготовка к лабораторной работе	5	9
		Подготовка к тестированию	5	9
7	Директивы препроцессора.	Подготовка к лабораторной работе	5	9
7		Подготовка к тестированию	4	9
8	Обработка прерываний.	Подготовка к лабораторной работе	10	9
U		Подготовка к тестированию	4	10
9	Стандартные функции вводавывода.	Подготовка к лабораторной работе	4	5
Ито	го:		72	126

4.7. Курсовые работы/проекты

Не предусмотрены учебным планом.

5. Образовательные технологии

Преподавание дисциплины ведется с применением следующих видов образовательных технологий:

традиционные объяснительно-иллюстративные технологии, которые обеспечивают доступность учебного материала для большинства студентов, системность, отработанность организационных форм и привычных методов, относительно малые затраты времени;

технологии проблемного обучения, направленные на развитие познавательной активности, творческой самостоятельности студентов и предполагающие последовательное и целенаправленное выдвижение перед студентом познавательных задач, разрешение которых позволяет студентам активно усваивать знания (используются поисковые методы; постановка познавательных задач);

технологии развивающего обучения, позволяющие ориентировать учебный процесс на потенциальные возможности студентов, их реализацию и развитие;

технологии концентрированного обучения, суть которых состоит в создании максимально близкой к естественным психологическим особенностям человеческого восприятия структуры учебного процесса и которые дают возможность глубокого и системного изучения содержания учебных дисциплин за счет объединения занятий в тематические блоки;

технологии модульного обучения, дающие возможность обеспечения гибкости процесса обучения, адаптации его к индивидуальным потребностям и особенностям обучающихся (применяются, как правило, при самостоятельном обучении студентов по индивидуальному учебному плану);

технологии дифференцированного обучения, обеспечивающие возможность создания оптимальных условий для развития интересов и способностей студентов, в том числе и студентов с особыми образовательными потребностями, что позволяет реализовать в культурно-образовательном пространстве университета идею создания равных возможностей для получения образования;

технологии активного (контекстного) обучения, с помощью которых осуществляется моделирование предметного, проблемного и социального содержания будущей профессиональной деятельности студентов (используются активные и интерактивные методы обучения) и т.д.

Максимальная эффективность педагогического процесса достигается путем конструирования оптимального комплекса педагогических технологий и (или) их элементов на личностно-ориентированной, деятельностной, диалогической основе и использования необходимых современных средств обучения.

6. Формы контроля освоения дисциплины

Текущая аттестация студентов производится в дискретные временные интервалы лектором и преподавателем(ями), ведущими лабораторные работы и практические занятия по дисциплине в следующих формах:

- вопросы к лабораторным работам;
- тесты;
- вопросы к зачету;
- вопросы к экзамену.

Фонды оценочных средств, включающие контрольные вопросы, вопросы коллоквиумов, тесты и методы контроля, позволяющие оценить результаты текущей и промежуточной аттестации обучающихся по данной дисциплине, помещаются в приложении к рабочей программе в соответствии с «Положением о фонде оценочных средств».

Промежуточная аттестация по результатам освоения дисциплины в 8 семестре обучения проходит в форме устного экзамена (включает в себя ответ на теоретические вопросы), а в 7 семестре обучения – в форме зачета. Студенты, выполнившие 75 % текущих и контрольных мероприятий на «отлично», а остальные 25 % на «хорошо», имеют право на получение итоговой отличной опенки.

В зачетную ведомость и зачетную книжку выставляются оценки по национальной шкале, приведенной в таблице.

Характеристика знания предмета и ответов	Зачеты
Обучающийся глубоко и в полном объёме владеет программным	
материалом. Грамотно, исчерпывающе и логично его излагает в	зачтено
устной или письменной форме. При этом знает рекомендованную	
литературу, проявляет творческий подход в ответах на вопросы и	
правильно обосновывает принятые решения, хорошо владеет	
умениями и навыками при выполнении практических задач.	
Обучающийся знает программный материал, грамотно и по сути	
излагает его в устной или письменной форме, допуская	
незначительные неточности в утверждениях, трактовках,	
определениях и категориях или незначительное количество	
ошибок. При этом владеет необходимыми умениями и навыками	
при выполнении практических задач.	
Обучающийся знает только основной программный материал,	
допускает неточности, недостаточно чёткие формулировки,	
непоследовательность в ответах, излагаемых в устной или	
письменной форме. При этом недостаточно владеет умениями и	
навыками при выполнении практических задач. Допускает до 30 %	
ошибок в излагаемых ответах.	
Обучающийся не знает значительной части программного	не зачтено
материала. При этом допускает принципиальные ошибки в	
доказательствах, в трактовке понятий и категорий, проявляет	
низкую культуру знаний, не владеет основными умениями и	
навыками при выполнении практических задач. Обучающийся	
отказывается от ответов на дополнительные вопросы	

В экзаменационную ведомость и зачетную книжку выставляются оценки по национальной шкале, приведенной в таблице.

Характеристика знания предмета и ответов	Экзамены
Обучающийся глубоко и в полном объёме владеет программным	отлично
материалом. Грамотно, исчерпывающе и логично его излагает в	(5)
устной или письменной форме. При этом знает рекомендованную	
литературу, проявляет творческий подход в ответах на вопросы и	
правильно обосновывает принятые решения, хорошо владеет	
умениями и навыками при выполнении практических задач.	
Обучающийся знает программный материал, грамотно и по сути	
излагает его в устной или письменной форме, допуская	Vonotito
незначительные неточности в утверждениях, трактовках,	хорошо
определениях и категориях или незначительное количество	(4)
ошибок. При этом владеет необходимыми умениями и навыками	
при выполнении практических задач.	

Обучающийся знает только основной программный материал,	
допускает неточности, недостаточно чёткие формулировки,	
непоследовательность в ответах, излагаемых в устной или	удовлетворительно
письменной форме. При этом недостаточно владеет умениями и	(3)
навыками при выполнении практических задач. Допускает до 30 %	
ошибок в излагаемых ответах.	
Обучающийся не знает значительной части программного	неудовлетворительно
материала. При этом допускает принципиальные ошибки в	(2)
доказательствах, в трактовке понятий и категорий, проявляет	
низкую культуру знаний, не владеет основными умениями и	
навыками при выполнении практических задач. Обучающийся	
отказывается от ответов на дополнительные вопросы	

7. Учебно-методическое и программно-информационное обеспечение дисциплины

- а) Основная литература:
- 1. Симаков Г.М. Цифровые устройства и микропроцессоры в автоматизированном электроприводе: учеб. пособие [Электронный ресурс] / Симаков Г.М. Новосибирск: Изд-во НГТУ, 2013. 211 с. ISBN 978-5-7782-2210-6 Текст: электронный // ЭБС "Консультант студента": [сайт]. Режим доступа: http://www.studentlibrary.ru/book/ISBN9785778222106.html
- 2. Фудзисава Ю. 32-битные микропроцессоры и микроконтроллеры SuperH [Электронный ресурс] / Юкихо Фудзисава; пер. с яп. Клионского А.Б М.: ДМК Пресс, 2016. 359 с. (Серия "Мировая электроника") ISBN 978-5-94120-206-5 Текст: электронный // ЭБС "Консультант студента": [сайт]. Режим доступа: http://www.studentlibrary.ru/book/ISBN9785941202065.html
 - б) Дополнительная литература:
- 1. Борисевич А.В. Лабораторная работа №3. Изучение основ использования микроконтроллеров STM32, библиотеки STM32 Standard Peripherals Library и среды разработки Keil [Электронный ресурс] / А. В. Борисевич. Москва: Инфра-М, 2014. 17 с. Текст: электронный. URL: http://znanium.com/catalog/product/470097
- 2. Петросянц К.О. Электроника интегральных схем. Лабораторные работы и упражнения [Электронный ресурс]: Учебное пособие / Петросянц К.О., Козынко П.А., Рябов Н.И.; Под ред. Петросянц К.О. М.: СОЛОН-Пр., 2012. 520 с. ISBN 978-5-91359-213-2 Режим доступа: http://znanium.com/catalog/product/892456
- 3. Мовчан Д. А. Полупроводниковая электроника [Электронный ресурс] / под. ред. Д.А. Мовчан. Москва: ДМК Пресс, 2015. 592 с. (Схемотехника). ISBN 978-5-97060-312-3. Текст: электронный. URL: https://new.znanium.com/catalog/product/1027511 Текст: электронный. URL: http://znanium.com/catalog/product/1027511
- 4. Гальперин М.В. Электротехника и электроника [Электронный ресурс]: учебник / М.В. Гальперин. 2-е изд. Москва: ФОРУМ: ИНФРА-М, 2020. 480 с. (Высшее образование: Бакалавриат). Текст: электронный. URL: http://znanium.com/catalog/product/1057214
 - в) Методические рекомендации/указания:

- 1. Методические указания к практическим занятиям по дисциплине «Микропроцессорная техника» для студентов специальности "Электронные приборы и устройства" (электронное издание) / Сост.: В.А. Войтенко, Г.О. Войтенко. Луганск: Изд-во ЛНУ, 2018. 27 с.
- 2. Методические указания к лабораторным занятиям по дисциплине «Микропроцессорная техника» для студентов специальности "Электронные приборы и устройства" (электронное издание) / Сост.: В.А. Войтенко, Г.О. Войтенко. Луганск: Изд-во ЛНУ, 2017. 25 с.

г) Интернет-ресурсы:

Министерство образования и науки Российской Федерации – http://минобрнауки.pф/

Федеральная служба по надзору в сфере образования и науки – http://obrnadzor.gov.ru/

Министерство образования и науки Луганской Народной Республики – https://minobr.su

Народный совет Луганской Народной Республики – https://nslnr.su

Портал Федеральных государственных образовательных стандартов высшего образования – http://fgosvo.ru

Федеральный портал «Российское образование» – http://www.edu.ru/

Информационная система «Единое окно доступа к образовательным ресурсам» – http://window.edu.ru/

Федеральный центр информационно-образовательных ресурсов - http://fcior.edu.ru/

Далевский педагогический портал – http://ped.dahluniver.ru/

Электронные библиотечные системы и ресурсы

Электронно-библиотечная система «Консультант студента» – http://www.studentlibrary.ru/cgi-bin/mb4x

Электронно-библиотечная система «StudMed.ru» –https://www.studmed.ru Университетская библиотека On-line – http://www.biblioclub.ru

Научная электронная библиотека eLIBRARY – http://elibrary.ru

Информационный ресурс библиотеки образовательной организации

Научная библиотека имени А. Н. Коняева – http://biblio.dahluniver.ru/

Научные журналы

"GNU Scientific Library" (GSL - библиотека для научных вычислений проекта GNU): http://www.gnu.org/software/gsl.

Система схемотехнического моделирования LTSpice IV. Краткое руководство: http://zpostbox.ru/ltspice.html.

Электронные компоненты: http://www.elitan.ru/.

Навигатор по профессиональным электронным ресурсам – http://www.spsl.nsc.ru/win/nelbib/nav ei.htm

8. Материально-техническое обеспечение дисциплины

Лекционные занятия проводятся с использованием комплекта электронных презентаций в аудитории, оснащенной презентационной техникой (проектор, экран, ноутбук).

Лабораторные работы проводятся с использованием компьютеризированных лабораторных стендов, пакета специализированных компьютерных программ, а также компьютерной математической среды МАТLAB и компьютерной среды для моделирования Multisim.

Рабочие места преподавателя и студентов в учебной лаборатории оснащены компьютерами с доступом в Интернет, предназначенными для работы в указанных специализированных компьютерных программах и средах.

Программное обеспечение:

Функциональное назначение	Бесплатное программное обеспечение	Ссылки
Офисный пакет	Libre Office 6.3.1	https://www.libreoffice.org/ https://ru.wikipedia.org/wiki/LibreOffice
Операционная система	UBUNTU 19.04	https://ubuntu.com/ https://ru.wikipedia.org/wiki/Ubuntu
Браузер	Firefox Mozilla	http://www.mozilla.org/ru/firefox/fx
Браузер	Opera	http://www.opera.com
Почтовый клиент	Mozilla Thunderbird	http://www.mozilla.org/ru/thunderbird
Файл-менеджер	Far Manager	http://www.farmanager.com/download.php
Архиватор	7Zip	http://www.7-zip.org/
Графический редактор	GIMP (GNU Image Manipulation Program)	http://www.gimp.org/ http://gimp.ru/viewpage.php?page_id=8 http://ru.wikipedia.org/wiki/GIMP
Редактор PDF	PDFCreator	http://www.pdfforge.org/pdfcreator
Аудиоплеер	VLC	http://www.videolan.org/vlc/

8. Оценочные средства по дисциплине

Паспорт

фонда оценочных средств по учебной дисциплине «Программирование микроконтроллеров для систем управления, сбора и обработки данных»

Перечень компетенций (элементов компетенций), формируемых в результате освоения учебной дисциплины (модуля) или практики

№	Код	Формулировка	Индикатор	Контролируемые	Этапы
п/	контролируемо	контролируемой	ы	темы	формировани
П	й	компетенции	достижений	учебной	Я
	компетенции		компетенци	дисциплины,	(семестр
			и (по	практики	изучения)
			реализуемо		
			й		
			дисциплине		
)		
1	ПК-1	Способен	ПК-1.1.	Тема 1	1
		строить	ПК-1.2.	Архитектура	
		простейшие	ПК-1.3.	микроконтроллеро	
		физические и		В	
		математические		Тема 2	1
		модели		Компиляторы и	
		приборов, схем,		средства	
		устройств и		разработки	
		установок		Тема 3 Язык	1
		электроники и		высокого уровня С	
		наноэлектроник		Тема 4	1
		и различного		Программная	
		функциональног		реализация работы	
		о назначения, а		с внутренними	
		также		устройствами	
		использовать		микроконтроллеро	
		стандартные		В	
		программные		Тема 5	2
		средства их компьютерного		Программная	
		моделирования		реализация работы	
		моделирования		с внешними	
				устройствами	
				микроконтроллера	2
				Тема 6	2
				Программная	
				реализация	
				простых устройств	
				на	
				микроконтроллера	
				х Тема 7	2
				Тема / Программная	∠
				реализация сложных	
				.,	
L				устройств на	

				Ī	
				микроконтроллера	
				X	2
				Тема 8	2
				Программная	
				реализация	
				микропроцессорны	
				х систем на базе	
				микроконтроллеро	
				в с центральной	
				ЭВМ	
2.	ПК-3	Способен	ПК-3.1.	Тема 1	1
1	THC 5	выполнять	ПК-3.2.	Архитектура	1
			ПК-3.2.		
		расчет и		микроконтроллеро	
		проектирование	ПК-3.4.	В	1
		электронных	ПК-3.5.	Тема 2	1
		приборов, схем		Компиляторы и	
		и устройств		средства	
		различного		разработки	
		функциональног		Тема 3 Язык	1
		о назначения в		высокого уровня С	
		соответствии с		Тема 4	1
		техническим		Программная	
		заданием с		реализация работы	
		использованием		с внутренними	
		средств			
		-		устройствами	
		автоматизации		микроконтроллеро	
		проектирования		В	_
				Тема 5	2
				Программная	
				реализация работы	
				с внешними	
				устройствами	
				микроконтроллера	
				Тема 6	2
				Программная	
				реализация	
				простых устройств	
				на	
				микроконтроллера	
				X	2
				Тема 7	2
				Программная	
				реализация	
				сложных	
				устройств на	
				микроконтроллера	
				X	
				Тема 8	2
				Программная	
				реализация	
				микропроцессорны	
				х систем на базе	
				микроконтроллеро	

		В	c	центральной	
		ЭE	8M		

Показатели и критерии оценивания компетенций, описание шкал оценивания

№ п/ п	Код контролируемо й компетенции	Индикаторы достижений компетенци и (по реализуемо й дисциплине	Перечень планируемых результатов	Контролируемые темы учебной дисциплины	Наименовани е оценочного средства
1.	ПК-1	ПК-1.1. ПК-1.2. ПК-1.3.	Знать: математическое описание физических процессов, протекающих в материалах из которых изготавливаются память и микроконтроллеры ; программное обеспечение для микроконтроллеро в AVR; построение математических моделей описывающих работу параллельных портов вводавывода, аналого- цифровое преобразование, цифро-аналоговое преобразование, широтно- импульсные модуляторы, шаговые двигатели; Уметь: строить физические и математические модели узлов и блоков микропроцессорны х устройств и микроконтроллеро в;	Тема 1, Тема 2, Тема 3, Тема 4, Тема 5, Тема 6, Тема 7, Тема 8	Контрольные вопросы к лабораторны м работам, тесты, вопросы к зачету, вопросы к экзамену

			Владеть: навыками компьютерного моделирования работы устройств входящих в состав микроконтроллеро в; навыками работы с электронными библиотеками и базами данных по моделированию и программированию микроконтроллеро в;		
2.	ПК-3	ПК-3.1. ПК-3.2. ПК-3.3. ПК-3.4. ПК-3.5.	Знать: принципы конструирования конструирования компараторов, последовательных интерфейсов обмена данными, препроцессора; исполнение ассемблерного кода, для обеспечения работы микроконтроллеро в; программную реализацию микропроцессорны х систем на базе микроконтроллеро в с центральной ЭВМ; Уметь: проводить оценочные расчеты временных интервалов работы микроконтроллеро в и составлять программы на языке С++; программировать микропроцессоры и микроконтроллеры на ассемблере и на языке С++; разрабатывать топологию устройств входящих в состав микроконтроллеро в и топологию печатных плат	Тема 1, Тема 2, Тема 3, Тема 4, Тема 5, Тема 6, Тема 7, Тема 8	Контрольные вопросы к лабораторны м работам, тесты, вопросы к зачету, вопросы к экзамену

микропроцессорны	
х устройств;	
Владеть: навыками	
подготовки	
принципиальных и	
монтажных	
электрических схем	
микропроцессорны	
х систем и	
устройств на	
основе	
микроконтроллеро	
В;	

Фонды оценочных средств по дисциплине «Программирование микроконтроллеров для систем управления, сбора и обработки данных»

Контрольные вопросы к лабораторным работам:

- 1. Как происходит обработка прерываний?
- 2. Как осуществляется сброс?
- 3. Что такое спящие режимы микроконтроллера?
- 4. Для чего предназначены таймеры-счетчики?
- 5. Какие функции выполняет сторожевой таймер?
- 6. Как организованы параллельные порты ввода-вывода?
- 7. Что такое аналого-цифровое преобразование?
- 8. Что такое цифро-аналоговое преобразование?
- 9. Каково назначение компараторов?
- 10. Для чего предназначены последовательные интерфейсы обмена данными.
- 11. Какие особенности имеет программное обеспечение для микроконтроллеров AVR?
- 12. Какие особенности имеет программное обеспечение для микроконтроллеров PIC?
- 13. Как выполняют программирование целевого устройства?
- 14. Какова структура программы на языке С?
- 15. Какие бывают типы данных?
- 16. Для чего предназначены операторы ветвления?
- 17. Что такое циклические конструкции?
- 18. Как осуществляется проверка условий?
- 19. Назовите стандартные функции ввода-вывода.
- 20. Приведите пример директивы препроцессора.
- 21. Как осуществляется обработка прерываний?
- 22. Как реализуется исполнение ассемблерного кода?
- 23. Как реализуется работа с памятью?
- 24. Как реализуется внешний сброс?
- 25. Как запрограммировать вход и выход в спящие режимы микроконтроллера?

- 26. Каковы особенности программирования таймеров-счетчиков?
- 27. Как программируют сторожевой таймер?
- 28. Как осуществляется работа с параллельными портами ввода-вывода?
- 29. Что такое аналого-цифровое преобразование?
- 30. Что такое цифро-аналоговое преобразование?
- 31. Внешние аналого-цифровые и цифро-аналоговые преобразователи.
- 32. Внешние компараторы.
- 33. Как устроены светодиодные, газоразрядные и жидкокристаллические модули отображения информации?
- 34. Как устроены светодиодные индикаторы?
- 35. Как устроены клавиатуры?
- 36. Как устроены графопостроители?
- 37. Что такое широтно-импульсные модуляторы?
- 38. Как работают шаговые двигатели?
- 39. Как работают привода электродвигателей?
- 40. Как работают внешние аналоговые и цифровые сенсоры?
- 41. Перечислите методы измерения температуры.
- 42. Что такое термопара?
- 43. Как измеряют температуру с помощью р-п-перехода?
- 44. Какие вы знаете методы измерения давления?
- 45. Какие вы знаете методы контроля освещенности?
- 46. Что такое инструментальная и методическая погрешности?
- 47. Что такое систематическая и случайная составляющая погрешности?
- 48. Что такое доверительный интервал?
- 49. Для чего используют коэффициенты Стьюдента?
- 50. Перечислите импульсные характеристики цифровых сигналов.
- 51. Что такое частота излома?
- 52. Назовите виды источников питания в системах сбора информации.
- 53. Назовите виды сигналов.
- 54. Для чего предназначены синфазный и дифференциальный усилители?
- 55. Что значит согласование сигналов?
- 56. Что такое волновое сопротивление?
- 57. Какова скорость распространения электрического сигнала?
- 58. Для чего предназначены измерительные усилители?
- 59. Как проводят измерение погрешностей ОУ?
- 60. Как проводят оценку погрешности схемы обработки сигналов?
- 61. Как рассчитывают погрешности АЦ и ЦА преобразований?
- 62. Назовите способы компенсации температурных уходов параметров электронных схем.
- 63. Приведите и поясните типовую структуру и организацию встроенной системы.

Критерии и шкала оценивания по оценочному средству контрольные вопросы к лабораторным работам

Шкала оценивания	Критерий оценивания
(интервал баллов)	

5	Ответ представлен на высоком уровне (студент в полном объеме осветил рассматриваемый вопрос, привел аргументы в пользу своих суждений, владеет соответствующей научной терминологией)
4	Ответ представлен на среднем уровне (студент в целом осветил рассматриваемый вопрос, привел аргументы в пользу своих суждений, допустив некоторые неточности)
3	Ответ представлен на низком уровне (студент допустил существенные неточности, изложил материал с ошибками, не владеет в достаточной степени соответствующей научной терминологией)
2	Ответ представлен на неудовлетворительном уровне или не представлен (студент не готов отвечать)

Оценочные средства для промежуточной аттестации (экзамен):

- 1. Память.
- 2. Обработка прерываний.
- 3. Сброс.
- 4. Спящие режимы микроконтроллера.
- 5. Таймеры счетчики.
- 6. Сторожевой таймер.
- 7. Параллельные порты ввода-вывода.
- 8. Аналого-цифровое преобразование.
- 9. Цифро-аналоговое преобразование.
- 10. Компараторы.
- 11.Последовательные интерфейсы обмена данными.
- 12.Программное обеспечение для микроконтроллеров AVR.
- 13. Программное обеспечение для микроконтроллеров РІС.
- 14. Программирование целевого устройства.
- 15. Структура программы на языке С.
- 16. Типы данных.
- 17. Переменные.
- 18. Константы.
- 19. Функции.
- 20.Подпрограммы.
- 21. Указатели и адреса переменных.
- 22. Массивы и строки.
- 23.Операторы ветвления.
- 24. Циклические конструкции.
- 25. Проверка условий.
- 26.Стандартные функции ввода-вывода.
- 27. Директивы препроцессора.
- 28.Обработка прерываний.
- 29. Исполнение ассемблерного кода.
- 30. Работа с разными типами памяти.
- 31. Обработка прерываний.

- 32.Внешний сброс.
- 33. Вход и выход в спящие режимы микроконтроллера.
- 34. Программирование таймеров счетчиков.
- 35. Программирование сторожевого таймера.
- 36. Работа с параллельными портами ввода-вывода.
- 37. Аналого-цифровое преобразование.
- 38. Цифро-аналоговое преобразование.
- 39. Компараторы.
- 40.Обмен данных посредством последовательных интерфейсов.
- 41. Работа с внешней памятью.
- 42. Внешние аналого-цифровые и цифро-аналоговые преобразователи.
- 43.Внешние компараторы.
- 44.Светодиодные, газоразрядные и жидкокристаллические модули отображения информации.
- 45. Светодиодные индикаторы.
- 46.Клавиатуры.
- 47. Графопостроители.
- 48. Широтно-импульсные модуляторы.
- 49. Шаговые двигатели.
- 50. Привода электродвигателей.
- 51. Внешние аналоговые и цифровые сенсоры.
- 52. Электронный термометр на терморезисторе.
- 53. Электронный термометр на диоде.
- 54. Электронный термометр на термопаре.
- 55. Электронный фотометр.
- 56. Электронный пирометр.
- 57. Электронный тахометр.
- 58. Электронный пиранометр.
- 59. Электронный аэрометр.
- 60. Электронный металлодетектор.
- 61. Электронный вихретоковый дефектоскоп.
- 62. Ультразвуковой эхолот.
- 63. Ультразвуковой дефектоскоп.
- 64. Ультразвуковой толщиномер.
- 65. Ультразвуковой скоростемер.
- 66. Ультразвуковой расходомер.
- 67. Роботизированный солнечный фотометр.
- 68.Сверлильный станок с числовым программным управлением.
- 69. Токарный станок с числовым программным управлением.
- 70.Плазморез с числовым программным управлением.
- 71. Обрабатывающий центр с числовым программным управлением.
- 72. Технологическая производственная линия.
- 73. Метеоцентр.
- 74. Центр космической погоды.

Критерии и шкала оценивания по оценочному средству вопросы к экзамену

Шкала оценивания	Критерий оценивания
(интервал баллов)	
отлично (5)	Студент глубоко и в полном объёме владеет программным материалом. Грамотно, исчерпывающе и логично его излагает в устной или письменной форме. При этом знает рекомендованную литературу, проявляет творческий подход в ответах на вопросы и правильно обосновывает принятые решения, хорошо владеет умениями и навыками при выполнении практических задач.
хорошо (4)	Студент знает программный материал, грамотно и по сути излагает его в устной или письменной форме, допуская незначительные неточности в утверждениях, трактовках, определениях и категориях или незначительное количество ошибок. При этом владеет необходимыми умениями и навыками при выполнении практических задач.
удовлетворительно (3)	Студент знает только основной программный материал, допускает неточности, недостаточно чёткие формулировки, непоследовательность в ответах, излагаемых в устной или письменной форме. При этом недостаточно владеет умениями и навыками при выполнении практических задач. Допускает до 30% ошибок в излагаемых ответах.
неудовлетворительно (2)	Студент не знает значительной части программного материала. При этом допускает принципиальные ошибки в доказательствах, в трактовке понятий и категорий, проявляет низкую культуру знаний, не владеет основными умениями и навыками при выполнении практических задач. Студент отказывается от ответов на дополнительные вопросы

Тесты:

- 1. Основным классификационным признаком микроконтроллера является:
- А) технология построения управляющего устройства.
- Б) тип периферии.
- В) разрядность данных.
- 2. Архитектура микропроцессора может быть следующего типа:
- А) Неймановская.
- Б) Оксфордская.
- В) Гарвардская.
- 3. Микроконтроллеры для управления приводами относятся к:
- А) микроконтроллерам общего назначения.
- Б) специализированным микроконтроллерам.
- В) микропроцессорам.
- 4. Серийное производств микроконтроллеров семейства AVR начато:
- А) в 1987 году.

- Б) в 1997 году.
- В) в 2007 году.
- 5. В случае если объект регулирования аналоговый, то необходимо использование:
 - А) ОУ.
 - Б) АЦП.
 - В) ЦАП.
 - 6. Микроконтроллер ATmega8 содержит:
 - А) 23 программируемые линии ввода/вывода.
 - Б) три 8-разрядных таймера/счетчика.
 - В) два 16-разрядных таймера/счетчика.
- 7. Для вывода аналогового сигнала из микроконтроллера может использоваться
 - А) АЦП.
 - Б) ЦАП.
 - В) ШИМ.
 - 8. Временная диаграмма логической операции содержит:
 - А) таблицу истинности.
 - Б) временную шкалу.
 - В) описание регистров.
 - 9. Для логической схемы время является:
 - А) входной переменной.
 - Б) выходной переменной.
 - В) независимой переменной.

Критерии и шкала оценивания по оценочному средству тесты

Шкала	оценивания	Критерий оценивания
(интервал	і баллов)	
	5	Тесты выполнены на высоком уровне (правильные ответы даны на 90-100% тестов)
	4	Тесты выполнены на среднем уровне (правильные ответы даны на 75-89% тестов)
	3	Тесты выполнены на низком уровне (правильные ответы даны на 50-74% тестов)
	2	Тесты выполнены на неудовлетворительном уровне (правильные ответы даны менее чем на 50% тестов)

Оценочные средства для промежуточной аттестации (зачет)

1. Память. Обработка прерываний. Сброс.

- 2. Спящие режимы микроконтроллера.
- 3. Таймеры счетчики. Сторожевой таймер.
- 4. Параллельные порты ввода-вывода.
- 5. Аналого-цифровое преобразование.
- 6. Цифро-аналоговое преобразование.
- 7. Компараторы.
- 8. Последовательные интерфейсы обмена данными.
- 9. Программное обеспечение для микроконтроллеров AVR.
- 10.Программное обеспечение для микроконтроллеров PIC.
- 11. Структура программы на языке С.
- 12.Типы данных.
- 13. Переменные. Константы. Функции.
- 14.Подпрограммы.
- 15. Указатели и адреса переменных.
- 16. Массивы и строки.
- 17. Операторы ветвления.
- 18. Циклические конструкции.
- 19. Проверка условий.
- 20. Стандартные функции ввода-вывода.
- 21. Директивы препроцессора.
- 22. Исполнение ассемблерного кода.
- 23. Работа с разными типами памяти.
- 24.Внешний сброс.
- 25. Вход и выход в спящие режимы микроконтроллера.
- 26. Работа с параллельными портами ввода-вывода.
- 27. Работа с внешней памятью.
- 28.Внешние аналого-цифровые и цифро-аналоговые преобразователи.
- 29.Внешние компараторы.
- 30.Светодиодные, газоразрядные и жидкокристаллические модули отображения информации.
- 31. Светодиодные индикаторы. Клавиатуры. Графопостроители.
- 32. Широтно-импульсные модуляторы.
- 33. Шаговые двигатели.
- 34. Привода электродвигателей.
- 35.Внешние аналоговые и цифровые сенсоры.
- 36. Электронный термометр на терморезисторе.
- 37. Электронный термометр на диоде.
- 38. Электронный термометр на термопаре.
- 39. Электронный фотометр.
- 40. Электронный вихретоковый дефектоскоп.
- 41. Ультразвуковой эхолот.
- 42. Ультразвуковой дефектоскоп.
- 43. Ультразвуковой толщиномер.
- 44. Ультразвуковой скоростемер.
- 45. Ультразвуковой расходомер.
- 46.Роботизированный солнечный фотометр.

- 47. Сверлильный станок с числовым программным управлением.
- 48. Токарный станок с числовым программным управлением.
- 49.Плазморез с числовым программным управлением.
- 50. Обрабатывающий центр с числовым программным управлением.
- 51. Технологическая производственная линия.
- 52. Метеоцентр.

Критерии и шкала оценивания по оценочному средству промежуточный контроль (зачет)

Характеристика знания предмета и ответов	Зачеты
Обучающийся глубоко и в полном объёме владеет программным	
материалом. Грамотно, исчерпывающе и логично его излагает в	зачтено
устной или письменной форме. При этом знает рекомендованную	
литературу, проявляет творческий подход в ответах на вопросы и	
правильно обосновывает принятые решения, хорошо владеет	
умениями и навыками при выполнении практических задач.	
Обучающийся знает программный материал, грамотно и по сути	
излагает его в устной или письменной форме, допуская	
незначительные неточности в утверждениях, трактовках,	
определениях и категориях или незначительное количество	
ошибок. При этом владеет необходимыми умениями и навыками	
при выполнении практических задач.	
Обучающийся знает только основной программный материал,	
допускает неточности, недостаточно чёткие формулировки,	
непоследовательность в ответах, излагаемых в устной или	
письменной форме. При этом недостаточно владеет умениями и	
навыками при выполнении практических задач. Допускает до 30 %	
ошибок в излагаемых ответах.	
Обучающийся не знает значительной части программного	не зачтено
материала. При этом допускает принципиальные ошибки в	
доказательствах, в трактовке понятий и категорий, проявляет	
низкую культуру знаний, не владеет основными умениями и	
навыками при выполнении практических задач. Обучающийся	
отказывается от ответов на дополнительные вопросы	

Лист изменений и дополнений

№ п/п	Виды дополнений и изменений	Дата и номер протокола заседания кафедры (кафедр), на котором были рассмотрены и одобрены изменения и дополнения	Подпись (с расшифровкой) заведующего кафедрой (заведующих кафедрами)
		полотия п детопнотия	