МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Луганский государственный университет имени Владимира Даля» (ФГБОУ ВО «ЛГУ им. В. Даля»)

Северодонецкий технологический институт Кафедра информационных технологий, приборостроения и электротехники

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«Электромагнитная совместимость электронных устройств»

По направлению подготовки: 11.04.04 Электроника и наноэлектроника

Магистерская программа «Промышленная электроника и микропроцессорная техника»

Лист согласования РПУД

Рабочая программа учебной дисциплины «Электромагнитная совместимость электронных устройств» по направлению подготовки 11.04.04 Электроника и наноэлектроника (магистерская программа «Промышленная электроника и микропроцессорная техника») – 23 с.

Рабочая программа учебной дисциплины «Электромагнитная совместимость электронных устройств» разработана в соответствии Федеральным государственным образовательным стандартом высшего образования по направлению подготовки 11.04.04 Электроника и наноэлектроника, утвержденным приказом Министерства образования и науки Российской Федерации от 22 сентября 2017 г. № 959 (с изменениями и дополнениями в соответствии с приказами Министерства образования и науки Российской Федерации № 1456 от 26.11.2020 г., № 82 от 08.02.2021 г.).

СОСТАВИТЕЛЬ:

к.т.н., доцент Чебан В.Г.

Рабочая программа дисциплины утверждена на заседании кафедры информационных технологий, приборостроения и электротехники « 05 » сентября 2024 г., протокол № 1.

Заведующий кафедрой ИТПЭ_	В.Г. Чебан
Переутверждена: «»	20г., протокол №

Рекомендована на заседании учебно-методической комиссии Северодонецкого технологического института (филиал) федерального государственного бюджетного образовательного учреждения высшего образования «Луганский государственный университет имени Владимира Даля» «_16_» _сентября_ 2024 г., протокол №_1_.

Председатель учебно-методической комиссии СТИ (филиал) ФГБОУ ВО «ЛГУ им. В.Даля»

___ Ю.В. Бородач

[©] Чебан В.Г., 2024 г.

[©] ФГБОУ ВО «ЛГУ им. В. Даля» СТИ (филиал), 2024 г.

1. Цели и задачи дисциплины

Цель изучения дисциплины — получение знаний в области обеспечения электромагнитной совместимости (ЭМС) электронных устройств, как между собой, так и с любыми преобразователями электрической энергии, находящимися в непосредственной близости или подключенными к общему источнику питания.

Залачи:

- изучить вопросы обеспечения стойкости устройств к внешним воздействиям наносекундной и микросекундной длительности, а также их стойкости к электростатическим разрядам;
- изучить теорию распространения паразитных электромагнитных помех как по цепям питания, управления и нагрузки, так и посредством воздействия электромагнитным полем индукции от преобразователей электрической энергии;
- изучить частотные зависимости и величины излучаемой энергии базовыми элементами преобразовательных устройств.

2. Место дисциплины в структуре ОПОП ВО

Дисциплина «Электромагнитная совместимость электронных устройств» входит в часть, формируемую участниками образовательных отношений, дисциплин учебного плана.

Необходимыми условиями для освоения дисциплины являются:

знание возможностей программного обеспечения и вычислительной техники для решения научных задач прикладного характера;

умения использовать системный подход при интерпретации результатов научных исследований;

навыки обработки информации из различных источников, разработки математических моделей, в том числе с использованием современных информационных технологий.

Содержание дисциплины является логическим продолжением содержания дисциплин: «Актуальные проблемы современной электроники и наноэлектроники».

Служит основой для изучения следующих дисциплин: «Динамика управляемых преобразовательных установок», «Магнитные элементы электронных устройств», «Моделирование электронных устройств и систем», «Конструирование электронной приобретенные знания используются аппаратуры», И умения прохождении производственных практик, для выполнения и защиты ВКР..

3. Компетенции обучающегося, формируемые в результате освоения дисциплины

Код и наименование компетенции ПК-2. Способен к	Индикаторы достижений компетенции (по реализуемой дисциплине) ПК-2.1. Знает способы	Перечень планируемых результатов Знать: способы организации и
организации и проведению	организации и проведения	проведения эксперименталь-
экспериментальных исследований с применением современных средств и	экспериментальных исследований ПК-2.2. Умеет самостоятельно	ных исследований Уметь: проводить экспериментальные
методов.	проводить экспериментальные	исследования
	исследования ПК-2.3. Владеет навыками проведения исследования с	Владеть: навыками проведения исследований с применением современных
	применением современных средств и методов	средств и методов
	1 77	

ПК-3. Способен делать	ПК-3.1. Знает принципы	Знать: принципы проведения
научно-обоснованные выводы	проведения анализа	анализа полноценности и
по результатам теоретических	полноценности и	эффективности
и экспериментальных	эффективности	экспериментальных
исследований, давать	экспериментальных	исследований
рекомендации по	исследований	Уметь: подготавливать
совершенствованию	ПК-3.2. Умеет подготавливать	научные публикации на
устройств и систем, готовить	научные публикации на	основе результатов
научные публикации и заявки	основе результатов	исследований
на изобретения	исследований	Владеть: навыками
	ПК-3.3. Владеет навыками	подготовки заявок на
	подготовки заявок на	изобретения
	изобретения	

4. Структура и содержание дисциплины

4.1. Объем учебной дисциплины и виды учебной работы

Ριμι γιμοδικού ποδοπι κ	Объем час	ов (зач. ед.)
Вид учебной работы	Очная форма	Заочная форма
Οδιμοσ γινοδιμοσ μοτηγώνω (πουτο)	144	144
Общая учебная нагрузка (всего)	(4 зач. ед)	(4 зач. ед)
Обязательная аудиторная учебная нагрузка (всего) в	56	16
том числе:	30	10
Лекции	28	8
Семинарские занятия	_	_
Практические занятия	14	4
Лабораторные работы	14	4
Курсовая работа (курсовой проект)	_	_
Другие формы и методы организации образовательного	-	_
процесса		
Самостоятельная работа студента (всего)	88	128
Форма аттестации	экзамен	экзамен

4.2. Содержание разделов дисциплины

Тема 1. Предмет, цель и структура курса электромагнитной совместимости. Основные термины и определения в области электромагнитной совместимости и помехоустойчивости технических средств.

- **Тема 2.** Электромагнитная совместимость технических средств и их ранжирование. Электромагнитная совместимость технических средств и их ранжирование по уровням электромагнитных воздействий и по частотным спектрам. Несущие частоты и спектры идеальных и реальных преобразователей электрической энергии. Влияние полосы пропускания на измеряемый уровень радиопомех. Ряды Фурье и расчет амплитудных коэффициентов Фурье.
- **Тема 3. Распространение электромагнитных помех.** Распространение электромагнитных помех по портам питания, управления, нагрузок и посредством индукционных наводок через электромагнитное поле Методики и типы испытаний на определение параметров электромагнитной совместимости и помехоустойчивости технических средств.
- **Тема 4. Частотные зависимости базовых элементов схем устройств преобразовательной техники (резисторов, конденсаторов, индуктивностей, механических контактов реле).** Схемы замещения базовых элементов электронных устройств, их свойства и характеристики.

Тема 5. Испытательное оборудование на электромагнитную совместимость и помехоустойчивость электронных устройств. Испытательное оборудование для испытания устройств на воздействие микросекундных помех и электростатических разрядов. Испытательное оборудование для определение параметров электромагнитной совместимости.

Тема 6. Методики и типы испытаний на определение параметров электромагнитной совместимости и помехоустойчивости технических средств. Методики испытаний приборов и комплексов в соответствии с ГОСТ и правилами измерительной техники.

Тема 7. Способы борьбы с электромагнитными помехами. Способы борьбы с электромагнитными помехами устройств преобразовательной техники и обеспечение их помехоустойчивости Основные виды схем заземления и способы их подключения.

Тема 8. Экранирование магнитных и электрических помеховых полей, а также расчет их эффективности. Экранирование коаксиальных кабелей и их подсоединения. Методики создания экранов и их расчет.

Тема 9. Фильтрация сетевых цепей питания электронных устройств. Сглаживающие фильтры, фильтры дифференциальных и синфазных составляющих помех, энергетические фильтры, фильтры помех.

4.3. Лекции

No			Объем часов	
Л2	Название темы	Очная форма	Заочная форма	
1	Предмет, цель и структура курса электромагнитной совместимости	2	_	
2	Электромагнитная совместимость технических средств и их ранжирование	4	1	
3	Распространение электромагнитных помех	4	1	
4	Частотные зависимости базовых элементов схем устройств преобразовательной техники (резисторов, конденсаторов, индуктивностей, механических контактов реле)	2	1	
5	Испытательное оборудование на электромагнитную совместимость и помехоустойчивость электронных устройств	4	1	
6	Методики и типы испытаний на определение параметров электромагнитной совместимости и помехоустойчивости технических средств	4	1	
7	Способы борьбы с электромагнитными помехами	4	1	
8	Экранирование магнитных и электрических помеховых полей, а также расчет их эффективности. Экранирование коаксиальных кабелей и их подсоединения	2	1	
9	Фильтрация сетевых цепей питания электронных устройств	2	1	
	Итого:	28	8	

4.4. Практические занятия

No		Объем часов	
п/п	Название темы		Заочная форма
1	Электромагнитная совместимость технических средств и их ранжирование	2	_
2	Распространение электромагнитных помех	2	1

	Частотные зависимости базовых элементов схем устройств		
3	преобразовательной техники (резисторов, конденсаторов,	2	1
	индуктивностей, механических контактов реле)		
1	Испытательное оборудование на электромагнитную		1
7	совместимость и помехоустойчивость электронных устройств	2	1
5	Способы борьбы с электромагнитными помехами	2	1
	Экранирование магнитных и электрических помеховых полей,		
6	а также расчет их эффективности. Экранирование	2	_
	коаксиальных кабелей и их подсоединения		
7	7 Фильтрация сетевых цепей питания электронных устройств		_
_	Итого:	14	4

4.5 .Лабораторные работы

NG			Объем часов	
№ п/п	Название темы	Очная форма	Заочная форма	
	Распространение электромагнитных помех:			
	1.1. Исследование на эмиссию индустриальных помех			
1	электрической машины последовательного возбуждения.	6	2	
	1.2. Исследование на эмиссию индустриальных помех			
	источника питания ЭВМ по цепям питания.			
	Испытательное оборудование на электромагнитную			
	совместимость и помехоустойчивость электронных устройств:			
2	2.1. Испытания устройств электронной техники на	8	2	
2	устойчивость к импульсным помехам малой длительности.	8	2	
	2.2. Испытание устройств на воздействие электростатических			
	разрядов.			
	Итого:	14	4	

4.6 Самостоятельная работа студентов

Ma			Объем	1 часов
№ Название темы		Вид СРС	Очная форма	Заочная форма
1	Электромагнитная совместимость технических средств и их ранжирование	Изучение лекционного материала. Подготовка к практическим занятиям.	6	8
2	Распространение электромагнитных помех	Изучение лекционного материала. Подготовка к практическим занятиям.	8	14
3	Частотные зависимости базовых элементов схем устройств преобразовательной техники (резисторов, конденсаторов, индуктивностей, механических контактов реле)	Изучение лекционного материала. Подготовка к практическим занятиям.	8	14

	Испытательное оборудование	Изучение лекционного		
	на электромагнитную	материала.		
4	совместимость и	Подготовка к практическим	8	14
	помехоустойчивость	занятиям.		
	электронных устройств			
	Методики и типы испытаний	Изучение лекционного		
	на определение параметров	материала.		
5	электромагнитной	Подготовка к практическим	8	14
3	совместимости и	занятиям.	0	14
	помехоустойчивости			
	технических средств			
		Изучение лекционного		
6	Способы борьбы с	материала.	8	13
U	электромагнитными помехами	Подготовка к практическим	0	13
		занятиям.		
	Экранирование магнитных и	Изучение лекционного		
	электрических помеховых	материала.		
7	полей, а также расчет их	Подготовка к практическим	8	12
,	эффективности. Экранирование	занятиям.	8	12
	коаксиальных кабелей и их			
	подсоединения			
	Фильтрация сетевых цепей	Изучение лекционного		
8	=	материала.	7	12
8	питания электронных устройств	Подготовка к практическим	,	12
	устроиств	занятиям.		
9	Подготовка к экзамену.	Проработка изученного	27	27
7	подготовка к экзамену.	материала	41	21
	Итого:			128

4.7. Курсовые работы/проекты по дисциплине

Курсовые работы/проекты не предусмотрены учебным планом

5. Образовательные технологии

В процессе обучения для достижения планируемых результатов освоения дисциплины используются следующие образовательные технологии:

- традиционные объяснительно-иллюстративные технологии, которые обеспечивают доступность учебного материала для большинства студентов, системность, отработанность организационных форм и привычных методов, относительно малые затраты времени;
- информационно-коммуникационная технология, в том числе визуализация, создание электронных учебных материалов;
- использование электронных образовательных ресурсов при подготовке к лекциям, практическим и лабораторным занятиям;
- технология проблемного обучения, в том числе в рамках разбора проблемных ситуаций;
- технология развивающего обучения, в том числе постановка и решение задач от менее сложных к более сложным, развивающих компетенции студентов.

В рамках перечисленных технологий основными методами обучения являются: работа в команде, самостоятельная работа, проблемное обучение.

6. Учебно-методическое и информационное обеспечение дисциплины

- а) Основная литература:
- 1. Закарюкин, В. П. Электромагнитная совместимость и средства защиты: учебное пособие. / В. П. Закарюкин, М. Л. Дмитриева, А. В. Крюков, под ред. В. П. Закарюкина. Москва ; Берлин : Директ-Медиа, 2020. 247 с. URL: https://obuchalka.org/20231203158585/elektromagnitnaya-sovmestimost-i-sredstva-zashiti-zakarukin-v-p-dmitrieva-m-l-krukov-a-v-2020.html?ysclid=m10u1wnclw640856227 (дата обращения: 30.08.2024).
 - б) Дополнительная литература:
- 1. Ефанов В.И., Тихомиров А.А. Электромагнитная совместимость радиоэлектронных средств и систем. Учебное пособие. Томск: Томский государственный университет систем управления и радиоэлектроники, 2012. 228 с. URL: https://edu.tusur.ru/publications/748/download (дата обращения: 30.08.2024).
- 2. Хабигер Э. Электромагнитная совместимость. Основы ее обеспечения в технике: Пер. с нем. / И.П. Кужекин; Под ред. Б.К. Максимова. М.: Энергоатомиздат, 1995. 304 с. URL: https://djvu.online/file/zVTcbOoIqPXqz (дата обращения: 30.08.2024).
- 3. Харлов Н.Н. Электромагнитная совместимость в электроэнергетике: Учебное пособие. Томск: Изд-во ТПУ, 2007. 207 с. URL: https://drive.google.com/file/d/0BwsyErs7KOSoMTJIZDg1YmYtNTEwOC00NGMyLTgxZDctZDk1ZTJINTJjNWNh/view?layout=list&sort=name&num=50&resourcekey=0-hcWHet6Q164-0-VAspLFoQ (дата обращения: 30.08.2024).
- 4. ГОСТ 22505-97. Совместимость технических средств электромагнитная. Радиопомехи индустриальные от радиовещательных приемников, телевизоров и другой бытовой радиоэлектронной аппаратуры. Нормы и методы испытаний Текст: электронный //URL: https://dostupsreda.ru/media/files/standard/ГОСТ_22505-97.pdf (дата обращения 30.08.2024).
 - в) Интернет-ресурсы:
 - 1. Министерство образования и науки Российской Федерации http://минобрнауки.pd
- 2. Министерства природных ресурсов и экологии Российской Федерации http://www.mnr.gov.ru
 - 3. Федеральная служба по надзору в сфере образования и науки http://obrnadzor.gov.ru
- 4. Министерство образования и науки Луганской Народной Республики https://minobr.su
- 5. Министерство природных ресурсов и экологической безопасности ЛНР https://www.mprlnr.su
 - 6. Народный совет Луганской Народной Республики https://nslnr.su
- 7. Портал Федеральных государственных образовательных стандартов высшего образования http://fgosvo.ru
 - 8. Федеральный портал «Российское образование» http://www.edu.ru
- 9. Информационная система «Единое окно доступа к образовательным ресурсам» http://window.edu.ru
 - 10. Федеральный центр информационно-образовательных ресурсов http://fcior.edu.ru

Электронные библиотечные системы и ресурсы:

- 1. Электронно-библиотечная система «Консультант студента» http://www.studentlibrary.ru/cgi-bin/mb4x
 - 2. Электронно-библиотечная система «StudMed.ru» https://www.studmed.ru
 - 3. Научная электронная библиотека eLIBRARI.RU» http://elibrary.ru
 - 4. ЭБС Издательства «ЛАНЬ» https://e.lanbook.com

Информационный ресурс библиотеки образовательной организации

1. Научная библиотека имени А. Н. Коняева – http://biblio.dahluniver.ru

7. Материально-техническое и программное обеспечение дисциплины

Освоение дисциплины «Электромагнитная совместимость электронных устройств» предполагает использование академических аудиторий, соответствующих действующим санитарным и противопожарным нормам и правилам. Лекционные и практические занятия могут проводиться в компьютерном классе (компьютеры с доступом в Интернет, предназначенные для работы в электронной образовательной среде) или с применением презентационной техники (проектор, экран, компьютер).

Рабочее место преподавателя, оснащенное компьютером с доступом в Интернет.

Программное обеспечение:

Функциональное назначение	Бесплатное программное обеспечение	Ссылки
ILIMBICULIA DAVET I INTELIMICE D 3 I I		https://www.libreoffice.org/ https://ru.wikipedia.org/wiki/LibreOffice
Операционная система IIRINTI 19 04		https://ubuntu.com/ https://ru.wikipedia.org/wiki/Ubuntu
Браузер	Firefox Mozilla	http://www.mozilla.org/ru/firefox/fx
Браузер	Opera	http://www.opera.com
Почтовый клиент	Mozilla Thunderbird	http://www.mozilla.org/ru/thunderbird
Файл-менеджер	Far Manager	http://www.farmanager.com/download.php
Архиватор	7Zip	http://www.7-zip.org/
Графический редактор	GIMP (GNU Image Manipulation Program)	http://www.gimp.org/ http://gimp.ru/viewpage.php?page_id=8 http://ru.wikipedia.org/wiki/GIMP
Редактор PDF	PDFCreator	http://www.pdfforge.org/pdfcreator
Аудиоплеер	VLC	http://www.videolan.org/vlc/

8. Фонд оценочных средств для проведения текущего контроля и промежуточной аттестации по дисциплине

Паспорт оценочных средств по учебной дисциплине «Электромагнитная совместимость электронных устройств»

	Перечень компетенций, формируемых в результате освоения учебной дисциплины						
		Формулировка	Индикаторы		Этапы		
$N_{\underline{0}}$	Код	контролируемой	достижений	Темы учебной	формирования		
п/п	компетенции	компетенции	компетенции	дисциплины	(семестр		
		компстенции	(по дисциплине)		изучения)		
1	ПК-2	Способен к	ПК-2.1. Знает	Тема 1. Предмет,	2		
		организации и	способы	цель и структура			
		проведению	организации и	курса			
		экспериментальны	проведения	электромагнитной			
		х исследований с	экспериментальны	совместимости			
		применением	х исследований	Тема 2.	2		
		современных	ПК-2.2. Умеет	Электромагнитная			
		средств и методов.	самостоятельно	совместимость			
			проводить	технических средств			
			экспериментальны	и их ранжирование			
			е исследования	Тема 3.	2		
			ПК-2.3. Владеет	Распространение			
			навыками	электромагнитных			
			проведения	помех	_		
			исследования с	Тема 4. Частотные	2		
			применением	зависимости			
			современных	базовых элементов			
			средств и методов	схем устройств			
				преобразовательной			
				техники			
				(резисторов,			
				конденсаторов,			
				индуктивностей,			
				механических			
				контактов реле) Тема 5.	2		
					2		
				Испытательное			
				оборудование на			
				электромагнитную совместимость и			
				помехоустойчивость			
				электронных			
				устройств			
				Тема 6. Методики и	2		
				типы испытаний на	<u>~</u>		
				определение			
				параметров			
				электромагнитной			
				совместимости и			
				помехоустойчивости			
	L	<u> </u>	1				

				технических средств	
				Тема 7. Способы	2
				борьбы с	
				электромагнитными	
				помехами	
				Тема 8.	2
				Экранирование	
				магнитных и	
				электрических	
				помеховых полей, а	
				также расчет их	
				эффективности.	
				Экранирование	
				коаксиальных	
				кабелей и их	
				подсоединения	
				Тема 9. Фильтрация	2
				сетевых цепей	2
				питания	
				электронных	
				устройств	
2	ПК-3	Способен делать	ПК-3.1. Знает	Тема 1. Предмет,	2
	11K-3				2
		научно- обоснованные	принципы	цель и структура	
			проведения	курса	
		выводы по	анализа	электромагнитной	
		результатам	полноценности и	совместимости	2
		теоретических и	эффективности	Тема 2.	2
		экспериментальны	экспериментальны	Электромагнитная	
		х исследований,	х исследований	совместимость	
		давать	ПК-3.2. Умеет	технических средств	
		рекомендации по	подготавливать	и их ранжирование	
		совершенствовани	научные	Тема 3.	2
		ю устройств и	публикации на	Распространение	
		систем, готовить	основе результатов	электромагнитных	
		научные	исследований	помех	
		публикации и	ПК-3.3. Владеет	Тема 4. Частотные	2
		заявки на	навыками	зависимости	
		изобретения	подготовки заявок	базовых элементов	
			на изобретения	схем устройств	
				преобразовательной	
				техники	
				(резисторов,	
				конденсаторов,	
				индуктивностей,	
				механических	
				контактов реле)	
				Тема 5.	2
				Испытательное	2
				оборудование на	
				электромагнитную	
				совместимость и	
				помехоустойчивость	

электронных устройств
Тема 6. Методики и 2
типы испытаний на
определение
параметров
электромагнитной
совместимости и
помехоустойчивости технических средств
Тема 7. Способы 2
борьбы с
электромагнитными
помехами
Тема 8. 2
Экранирование
магнитных и
электрических
помеховых полей, а
также расчет их
эффективности.
Экранирование
коаксиальных
кабелей и их
подсоединения
Тема 9. Фильтрация 2
сетевых цепей
питания
электронных
устройств

Показатели и критерии оценивания компетенций, описание шкал оценивания

№ π/π	Код компетенции	Индикаторы достижений компетенции	Планируемые результаты обучения по дисциплине	Контролируемые темы учебной дисциплины	Наименование оценочного средства
1	ПК-2	ПК-2.1. Знает способы организации и проведения экспериментальных исследований ПК-2.2. Умеет самостоятельно проводить экспериментальные исследования ПК-2.3. Владеет навыками проведения исследования с применением современных средств и методов	Знать: способы организации и проведения экспериментальных исследований Уметь: проводить экспериментальные исследования Владеть: навыками проведения исследований с применением современных средств и методов	Тема 8.	Вопросы для контроля усвоения теоретического материала, тестовые задания, выполнение задания на практических занятиях
2	ПК-3	ПК-3.1. Знает принципы проведения анализа полноценности и эффективности экспериментальных исследований ПК-3.2. Умеет подготавливать научные публикации на основе результатов исследований ПК-3.3. Владеет навыками подготовки заявок на изобретения	Знать: принципы проведения анализа полноценности и эффективности экспериментальных исследований Уметь: подготавливать научные публикации на основе результатов исследований Владеть: навыками подготовки заявок на изобретения	Тема 3. Тема 4.	Вопросы для контроля усвоения теоретического материала, тестовые задания, выполнение задания на практических занятиях

8.1. Тестовые задания

(низкий уровень)

- 1. Параметры импульсных сигналов:
- а) Амплитуда, частота.
- б) Длительность, скважность импульсов.
- в) Относительная длительность импульсов, частота, время фронта
- г) Амплитуда, длительность, время фронтов, спад вершин
- 2. Частотный диапазон работы усилителя постоянного тока:
- a) $f_H = 0$, $f_B = f_1$

- 6) $f_H = f_1$, $f_B = f_2$
- B) fH = fB = f
- Γ) fH = 0, fB = 0
- 3. Задачи, решаемые стабилизатором напряжения:
- а) Компенсирует выходное напряжение при изменении сопротивления нагрузки
- б) Поддерживает неизменным выходное напряжение при изменении входного.
- в) Обеспечивает неизменность выходной мощности.
- г) Обеспечивает постоянство сопротивления нагрузки.
- 4. Свойство избирательного усилителя:
- а) Усиливает по постоянному току.
- б) Ослабляет сигнал в заданном диапазоне частот.
- в) Обладает коэффициентом усиления на заданной частоте.
- г) Повторяет входной сигнал.
- 5. Частотный диапазон работы избирательного усилителя: Варианты ответов
- a) $f_H = 0$, $f_B = f_1$
- 6) $f_H = f_1$, $f_B = f_2$
- B) fH = fB = f
- Γ) fh =0, fb = 0
- 6. Параметры обеспечиваемые эквивалентом сети:
- а) Сопротивление сети.
- б) Мощность сети.
- в) Импеданс сети.
- 7. Частотный диапазон эквивалента сети NNB-12:
- а) 50 Гц...150 кГц.
- б) 150 кГц...30 МГц
- в) 30 МГц...3 ГГц
- 8. Частотный диапазон работы селективного микро вольтметра SMV 11:
- а) 50 Гц...150 кГц
- б) 150 кГц...30 МГц
- в) 30 МГц...3 ГГц
- г) 9 кГц...30 МГц
- 9. Измерительный импеданс эквивалента сети NNB -12:
- а) 150 Ом
- б) 75 Ом
- в) 50 Ом
- 10. В каком частотном диапазоне проводится измерение квазипиковых импульсных напряжений радиопомех QPI:
 - а) 50 Гц...150 кГц
 - б) 150 кГц...30 МГц
 - в) 30 МГц...3 ГГц
 - г) 10 кГц...150 кГц
- 11. В каком частотном диапазоне проводится измерение квазипиковых импульсных напряжений радиопомех QPII:
 - а) 50 Гц...150 кГц
 - б) 150 кГц...30 МГц
 - в) 30 МГц...3 ГГц
 - г) 10 кГц...150 кГц
- 12. Измерения уровня помехи проводится на всём частотном диапазоне в каких единицах?
 - а) Ом
 - б) В
 - в) дБ

- г) A
- 13. Для проведения испытаний на стойкость электронной аппаратуры к электростатическим разрядам используются генераторы, имитирующие высоковольтный электростатический разряд.
 - а) ИГЭ 15.2
 - б) SMV 11
 - в) NNB-12
 - г) ИГМ 4.1
- 14. Для проведения испытаний на стойкость электронной аппаратуры используются имитационные генераторы высоковольтных импульсных помех, которые обладают возможностью введения кондуктивных помех на порты электропитания.
 - а) ИГЭ 15.2
 - б) SMV 11
 - в) NNB-12
 - г) ИГМ 4.1
- 15. Устройство необходимое для того, чтобы избежать попадания помех на оборудование, не подлежащее испытаниям, которое может быть подключено к тем же линиям электропитания.
 - а. УСР
 - б. ИТС
 - в) МИП
 - г) ФИ
- 16. Анализатор качества энергоснабжения МТ-1010 предназначен для измерения мощности, тока, напряжения, частоты, энергии, фазового сдвига, гармонических искажений. Укажите максимальное значение измеряемых гармоник.
 - a) 10
 - б) 40
 - в) 60
- 17. Результаты испытаний на стойкость к внешним воздействиям классифицируются, исходя из прекращения выполнения функций или ухудшения качества функционирования в сравнении с установленным уровнем. Укажите самый жесткий критерий качества функционирования.
 - a) A
 - б) В
 - в) C
 - г) D
 - 18. Параметры импульсной последовательности:
 - а) Амплитуда, частота.
 - б. Длительность, скважность импульсов.
 - в) Относительная длительность импульсов, частота, время фронта
 - г) Амплитуда, длительность, время фронтов, спад вершин
- 19. Что за помехи, которые представляют собой токи, текущие по проводящим конструкциям и земле.
 - а) Кондуктивные помехи
 - б) Микросекундные импульсные помехи
 - в) Индуктивные помехи
 - г) Электромагнитные помехи
 - 20. Что такое коммутационные переходные процессы?
 - а) Переключения в мощных системах электроснабжения
 - б) Резонансные колебания в электрических сетях
 - в) Дуговые разряды в электрических установках

Критерии и шкала оценивания по оценочному средству «Тестовые задания»

Шкала оценивания	Критерий оценивания	
5 (отлично)	85 – 100% правильных ответов	
4 (хорошо)	71 – 85% правильных ответов	
3 (удовлетворительно)	61 – 70% правильных ответов	
2 (неудовлетворительно)	60% правильных ответов и ниже	

8.2. Вопросы для контроля усвоения теоретического материала

(средний уровень)

- 1. Какие установлены нормы и методы измерения излучения, радиопомех и электромагнитных полей?
- 2. Что представляют собой радиопомехи от оборудования информационных технологий?
- 3. Приведите характеристики радиочастотных помех промышленного, научно-исследовательского и медицинского оборудования.
- 4. Каковы предельные значения характеристик радиопомех электроосветительного оборудования?
- 5. Каковы требования по электромагнитной совместимости к электроприборам, электроинструментам и аналогичной электроаппаратуре?
- 6. Каковы требования к электромагнитной совместимости электрооборудования для измерения, управления и лабораторного использования?
- 7. Что такое помехоустойчивость к промышленной окружающей среде?
- 8. Что означает нормирование на электромагнитное излучение в промышленной окружающей среде?
- 9. Объясните воздействие излучения, радиочастот и электромагнитных полей для жилых районов.
- 10. Объясните воздействие излучения, радиочастот и электромагнитных полей для районов с коммерческими предприятиями и районов с предприятиями легкой промышленности.
- 11. В чем заключается проблема электромагнитной совместимости электронных устройств?
- 12. Какие Вам известны источники электромагнитных помех?
- 13. Что такое рецепторы электромагнитных помех?
- 14. Что такое внутриаппаратурная электромагнитная совместимость электронных устройств?
- 15. Что такое межаппаратурная электромагнитная совместимость электронных устройств?
- 16. Приведите математическое описание основных видов помех и их статистические характеристики.
- 17. Каковы принципы расчета ЭМС?
- 18. Поясните понятие электромагнитной совместимости резисторов.
- 19. Поясните понятие электромагнитной совместимости конденсаторов.
- 20. Поясните понятие электромагнитной совместимости катушек индуктивности.
- 21. Поясните понятие электромагнитной совместимости фильтров.
- 22. Поясните понятие электромагнитной совместимости трансформаторов.
- 23. Поясните понятие электромагнитной совместимости дросселей.
- 24. Поясните понятие электромагнитной совместимости активных компонентов.
- 25. Поясните понятие электромагнитной совместимости коммутационных приборов.
- 26. Каковы рекомендации по выбору элементной базы с учетом ЭМС?
- 27. Поясните понятие электромагнитной совместимости линий связи электронных устройств.
- 28. Что понимается под помехами в одиночных линиях связи?

- 29. Что понимается под моделями линий связи?
- 30. Что понимается под короткими и длинными линии связи?
- 31. Приведите параметры некоторых внутриаппаратурных линий связи.
- 32. Что понимается под искажением сигнала в линиях связи?
- 33. Поясните, что такое длинная линия с нелинейной нагрузкой?
- 34. Что означает согласование линий связи?
- 35. Поясните, что такое индуцированные помехи в линиях связи?
- 36. Что понимается под взаимными электрическими параметрами линий связи?
- 37. Что понимается под помехами во взаимодействующих линиях связи?
- 38. Как проводится анализ для коротких линий связи?
- 39. Какие известны методы уменьшения перекрестных помех?
- 40) Что понимается под индуцированными помехами в длинных линиях связи?
- 41. Каковы рекомендации по конструированию линий связи?
- 42. Каковы основные характеристики экранирования?
- 43. Каковы основные методы экранирования?
- 44. Поясните конструктивное исполнение экранов.
- 45. Как проводится анализ эффективности электромагнитного экранирования?
- 46. Что понимается под экранированием электромагнитных полей?
- 47. Каково влияние конструктивных параметров экрана на величину магнитной связи?
- 48. Каковы требования, предъявляемые к конструкциям магнитных экранов?
- 49. Что представляет собой магнитостатическое экранирование?
- 50. Каковы требования к магнитостатическим экранам.
- 51. Что такое вытеснение магнитного поля помехи полем вихревых токов в экране?
- 52. Каковы требования к экранам на вихревых токах?
- 53. Что представляют собой сетчатые экраны?
- 54. Поясните понятие экранирования электростатических полей?
- 55. Каково влияние конструктивных параметров электростатических экранов на эффективность экранирования?
- 56. Каковы требования к электростатическим экранам?
- 57. Поясните понятие многослойных экранов?
- 58. Поясните понятие перфорированных экранов?
- 59. Какие Вам известны материалы для экранов?
- 60. Что такое экранирование печатного монтажа?
- 61. Что такое экранирование электроакустических полей?
- 62. В чем заключаются принципы фильтрации помех?
- 63) Что понимается под эффективностью фильтрации помех?
- 64. Поясните понятие помехоподавляющих элементов?
- 65. Что такое фильтрация цепей питания?
- 66. Каковы принципы подавления помех при помощи заземления?
- 67. Каковы принципы построения системы помехоподавляющего заземления в электронных устройствах?
- 68. Приведите схемы помехоподавляющих заземлений.
- 69. Каковы особенности устройства помехоподавляющего заземления на подвижных объектах?
- 70. Каковы нормы излучения и восприимчивости в области ЭМС?
- 71. Какие Вам известны экспериментальные методы исследования характеристик ЭМС?
- 72. Каковы технические задачи контроля электромагнитной обстановки?
- 73. Как проводится измерение напряженности поля и плотности потока мощности?
- 74. Что такое радиоприемные устройства средств радиоконтроля?
- 75. Какие вам известны измерительные антенные устройства и системы?
- 76. Как проводятся испытания на кондуктивную эмиссию электромагнитных помех от электронных устройств?

- 77. Как проводятся испытания на кондуктивную восприимчивость электронных устройств?
- 78. Как проводятся испытания на излучаемую эмиссию электромагнитных помех от электронных устройств?
- 79. Как проводятся испытания на излучаемую восприимчивость электронных устройств?
- 80. Какое вам известно оборудование для испытаний электронных устройств на электромагнитную совместимость?

Лектор или преподаватель, ведущий практические занятия по дисциплине производит устный опрос по пройденным теоретическим материалам и выставляет оценку в журнале с текущей успеваемостью.

Критерии и шкала оценивания по оценочному средству «Вопросы для контроля усвоения теоретического материала»

Шкала оценивания	Критерий оценивания
	Обучающийся глубоко и в полном объёме владеет программным
	материалом. Грамотно, исчерпывающе и логично его излагает в
5 (отлично)	устной или письменной форме. При этом знает рекомендованную
, ,	литературу, проявляет творческий подход в ответах на вопросы и
	правильно обосновывает принятые решения, хорошо владеет
	умениями и навыками при выполнении практических задач.
	Обучающийся знает программный материал, грамотно и по сути
	излагает его в устной или письменной форме, допуская
4 (хорошо)	незначительные неточности в утверждениях, трактовках,
т (хорошо)	определениях и категориях или незначительное количество ошибок.
	При этом владеет необходимыми умениями и навыками при
	выполнении практических задач.
	Обучающийся знает только основной программный материал,
	допускает неточности, недостаточно чёткие формулировки,
3 (удовлетворительно)	непоследовательность в ответах, излагаемых в устной или
з (удовнетворительно)	письменной форме. При этом недостаточно владеет умениями и
	навыками при выполнении практических задач. Допускает до 30%
	ошибок в излагаемых ответах.
	Обучающийся не знает значительной части программного материала.
	При этом допускает принципиальные ошибки в доказательствах, в
2 (неудовлетворительно)	трактовке понятий и категорий, проявляет низкую культуру знаний,
	не владеет основными умениями и навыками при выполнении
	практических задач. Обучающийся отказывается от ответов на
	дополнительные вопросы.

8.3 Практическое (прикладное) задание

(высокий уровень)

Задания, выполняемые на практических занятиях:

Задание 1. Сигнал, распространяясь на 1 км по коаксиальному кабелю, теряет половину напряжения. Выразите:

- а) отношение входного напряжения к выходному;
- б) отношение входной мощности к выходной;
- в) отношение входного напряжения к выходному в дБ;
- г) отношение входной мощности к выходной в дБ.

Правильные ответы будут следующими:

a) 2/1;

- 6) $2^2/1^2 = 4/1$;
- в) $20 \log (2/1) = 6 дБ$;
- Γ) 10 log (4/1) = 6 дБ.

Задание 2. Если напряженность излучаемого электрического поля в вакууме на расстоянии 3 м от малого источника составляет 40 дБмкВ/м, то чему она будет равна на расстоянии 10 м от того же источника?

- а) 40 дБмкВ/м;
- б) 30 дБмкВ/м; (верный ответ)
- в) 20 дБмкВ/м.

Задание 3. Рассчитать излучаемую мощность полуволнового резонансного диполя без потерь, возбуждаемого источником напряжением 1 В. Определить максимальную напряженность излучаемого поля на расстоянии 3 м от антенны.

Ответ: излучаемая мощность составит 10 мкВт. Максимальная напряженность составит 10 мкВ/м.

Задание 4. Рассчитать эффективность излучения полуволнового симметричного вибратора с центральным возбуждением, сделанного из медного провода радиусом 0,5 мм на частоте 100 МГц.

Ответ: эффективность составит 80%

Задание 5. Определить чему приблизительно равна частота излучения проводника длиной 0,25 м, присоединенного к крупному металлическому объекту и образующего четвертьволновую несимметричную антенну?

Ответ: приблизительно 300 МГц

Задание 6. На расстоянии 0,1 м от работающего трансформатора расположена экранирующая структура, сделанная из медного листа толщиной 10 мм. Оцените эффективность экранирования такого экрана на частоте 1,5 к Γ ц.

Ответ: 20 дБ

Задание 7. Итоговая эффективность экранирования корпуса, сделанного из материала ослабляющего плоскую волну на 60 дБ, будет:

- а) примерно 60 дБ;
- б) всегда меньше чем 60 дБ; (правильный ответ)
- в) обычно больше чем 60 дБ;
- г) иногда меньше чем 0 дБ.

Критерии и шкала оценивания по оценочному средству «Практическое задание»

Шкала оценивания	Характеристика знания предмета и ответов		
	Обучающийся полностью и правильно выполнил задание. Показал		
5 (отлично)	отличные знания, умения и владения навыками, применения их при		
	решении задач в рамках усвоенного учебного материала.		
	Обучающийся выполнил задание с небольшими неточностями.		
4 (хорошо)	Показал хорошие знания, умения и владения навыками, применения		
	их при решении задач в рамках освоенного учебного материала.		
	Обучающийся выполнил задание с существенными неточностями.		
3 (удовлетворительно)	Показал удовлетворительные знания, умения и владения навыками,		
	применения их при решении задач.		
	Обучающийся выполнил задание неправильно. При выполнении		
2 (неудовлетворительно)	обучающийся продемонстрировал недостаточный уровень знаний,		
2 (неудовлетворительно)	умений и владения ими при решении задач в рамках усвоенного		
	учебного материала.		

8.4 Оценочные средства для промежуточной аттестации (экзамен)

- 1. Проблема ЭМС, ее роль в повышении конкурентоспособности продукции.
- 2. Регулирование в области ЭМС.
- 3. Система стандартизации в области ЭМС: международные стандарты, региональные стандарты, стандарты РФ, технические регламенты.
 - 4. Стандарты в области функциональной безопасности.
 - 5. Источники помех искусственного и техногенного происхождения.
 - 6. Источники преднамеренных помех, рецепторы в виде чувствительной аппаратуры.
 - 7. Механизм проникновения помех в приборы.
- 8. Основные методы обеспечения ЭМС: зонирование, рациональный монтаж, экранирование, заземление, фильтрация и ограничение.
 - 9. Взаимодействие радиотехнических систем. Типы помеховых сигналов.
 - 10. Международное регулирование в области распределения радиочастот.
 - 11. Таблицы распределения частот, частотные зоны.
- 12. Элементная база цифровых быстродействующих систем. Излучение от цифровой аппаратуры.
- 13. Помехи в радиоэлектронной аппаратуре. Аналоговая и цифровая аппаратура. Показатели быстродействия.
- 14. Поведение проводов и компонентов электронных схем на высоких частотах, их модели на высоких частотах, причины возникновения помех
- 15. Модели компонентов: резисторов, конденсаторов, индуктивностей. Неидеальное поведение компонентов.
- 16. Основные типы проводных и кабельных межсоединений в приборах, их электрические характеристики, уровень защиты от внешних помех.
 - 17. Целостность сигнала как задача обеспечения ЭМС.
- 18. Спектр цифрового сигнала, модель линии передачи в печатной плате, влияние конструкторских факторов на целостность сигнала.
- 19. Дифференциальная передача сигнала как средство повышения помехозащищенности аппаратуры. Модель, модовый анализ и рекомендации по проектированию.
 - 20. Помехи (перекрестные и отражения) в линиях передачи.
- 21. Механизм образования помех в шинах питания. Требования к параметрам шин питания, шины питания в многослойных печатных платах (МПП).
 - 22. Развязывающие конденсаторы: выбор и установка
- 23. Роль экранирования в обеспечении ЭМС приборов. Разновидности задач экранирования.
 - 24. Материалы, применяемые при экранировании.
 - 25. Этапы проектирования экранов.
 - 26. Электростатическое экранирование, магнитостатическое экранирование.
- 27. Электродинамическое экранирование, расчет электродинамического экрана Рекомендации по электродинамическому экранированию.
 - 28. Неоднородности в экранах. Выполнение точек ввода воздуховодов и коммуникаций.
 - 29. Фильтрация как метод подавления помех в цепях аппаратуры.
- 30. Классификация фильтров, их конструкции, области применения, рекомендации по выбору и установке.
- 31. Механизм работы ограничителей перенапряжений. Стабилитроны, варисторы, диоды, газоразрядные приборы основные характеристики и области применения.
 - 32. Статическое электричество и его влияние на электронику.
- 33. Методы и средства устранения электростатического разряда в электронной аппаратуре.
- 34. Измерения помехоэмиссии, измерения помехозащищенности, измерение стойкости к кондуктивным помехам, измерение уровня кондуктивных помех. Условия тестирования и основное оборудование.

Критерии и шкала оценивания к промежуточной аттестации «экзамен»

	1 7
Шкала оценивания	Критерий оценивания
	Обучающийся глубоко и в полном объёме владеет программным
	материалом. Грамотно, исчерпывающе и логично его излагает в
5 (отлично)	устной или письменной форме. При этом знает рекомендованную
3 (013111 1110)	литературу, проявляет творческий подход в ответах на вопросы и
	правильно обосновывает принятые решения, хорошо владеет
	умениями и навыками при выполнении практических задач.
	Обучающийся знает программный материал, грамотно и по сути
	излагает его в устной или письменной форме, допуская
4 (хорошо)	незначительные неточности в утверждениях, трактовках,
т (хорошо)	определениях и категориях или незначительное количество ошибок.
	При этом владеет необходимыми умениями и навыками при
	выполнении практических задач.
	Обучающийся знает только основной программный материал,
	допускает неточности, недостаточно чёткие формулировки,
3 (удовлетворительно)	непоследовательность в ответах, излагаемых в устной или
3 (удовлетворительно)	письменной форме. При этом недостаточно владеет умениями и
	навыками при выполнении практических задач. Допускает до 30%
	ошибок в излагаемых ответах.
	Обучающийся не знает значительной части программного материала.
	При этом допускает принципиальные ошибки в доказательствах, в
2 (неудовлетворительно)	трактовке понятий и категорий, проявляет низкую культуру знаний,
2 (неудовлетворительно)	не владеет основными умениями и навыками при выполнении
	практических задач. Обучающийся отказывается от ответов на
	дополнительные вопросы.

9. Особенности организации обучения для лиц с ограниченными возможностями здоровья и инвалидов

При необходимости рабочая программа учебной дисциплины может быть адаптирована для обеспечения образовательного процесса инвалидов и лиц с ограниченными возможностями здоровья, в том числе с применением электронного обучения и дистанционных образовательных технологий.

Для этого требуется заявление студента (его законного представителя) и заключение психолого-медико-педагогической комиссии (ПМПК). В случае необходимости обучающимся из числа лиц с ограниченными возможностями здоровья (по заявлению обучающегося), а для инвалидов также в соответствии с индивидуальной программой реабилитации инвалида могут предлагаться следующие варианты восприятия учебной информации с учетом их индивидуальных психофизических особенностей:

- создание текстовой версии любого нетекстового контента для его возможного преобразования в альтернативные формы, удобные для различных пользователей;
- создание контента, который можно представить в различных видах без потери данных или структуры, предусмотреть возможность масштабирования текста и изображений без потери качества, предусмотреть доступность управления контентом с клавиатуры;
- создание возможностей для обучающихся воспринимать одну и ту же информацию из разных источников, например, так, чтобы лица с нарушениями слуха получали информацию визуально, с нарушениями зрения аудиально;
- применение программных средств, обеспечивающих возможность освоения навыков и умений, формируемых дисциплиной (модулем), за счёт альтернативных способов, в том числе виртуальных лабораторий и симуляционных технологий;
- применение электронного обучения, дистанционных образовательных технологий для передачи информации, организации различных форм интерактивной контактной работы обучающегося с преподавателем, в том числе вебинаров, которые могут быть использованы для проведения виртуальных лекций с возможностью взаимодействия всех участников дистанционного обучения, проведения семинаров, выступления с докладами и защиты выполненных работ, проведения тренингов, организации коллективной работы;
- применение электронного обучения, дистанционных образовательных технологий для организации форм текущего и промежуточного контроля;
- увеличение продолжительности сдачи обучающимся инвалидом или лицом с ограниченными возможностями здоровья форм промежуточной аттестации по отношению к установленной продолжительности их сдачи:
- продолжительность сдачи зачёта или экзамена, проводимого в письменной форме, не более чем на 90 минут;
- продолжительность подготовки обучающегося к ответу на зачёте или экзамене, проводимом в устной форме, не более чем на 20 минут;
- продолжительность выступления обучающегося при защите курсовой работы не более чем на 15 минут.

Лист изменений и дополнений

№ п/п	Виды дополнений и изменений с указанием страниц	Дата и номер протокола заседания кафедры (кафедр), на котором были рассмотрены и одобрены изменения и дополнения	Подпись (с расшифровкой) заведующего кафедрой (заведующих кафедрами)
1.			
2.			
3.			
4.			