МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Луганский государственный университет имени Владимира Даля» (ФГБОУ ВО «ЛГУ им. В. Даля»)

Северодонецкий технологический институт Кафедра информационных технологий, приборостроения и электротехники

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«Проектирование микропроцессорных систем»

По направлению подготовки: 11.04.04 Электроника и наноэлектроника

Магистерская программа «Промышленная электроника и микропроцессорная техника»

Лист согласования РПУД

Рабочая программа учебной дисциплины «Проектирование микропроцессорных систем» по направлению подготовки 11.04.04 Электроника и наноэлектроника (магистерская программа «Промышленная электроника и микропроцессорная техника») – 24 с.

Рабочая программа учебной дисциплины «Проектирование микропроцессорных систем» разработана в соответствии Федеральным государственным образовательным стандартом высшего образования по направлению подготовки 11.04.04 Электроника и наноэлектроника, утвержденным приказом Министерства образования и науки Российской Федерации от 22 сентября 2017 г. № 959 (с изменениями и дополнениями в соответствии с приказами Министерства образования и науки Российской Федерации № 1456 от 26.11.2020 г., № 82 от 08.02.2021 г.).

СОСТАВИТЕЛЬ:

к.т.н., доцент Чебан В.Г.

Рабочая программа дисциплины утверждена на заседании кафедры информационных технологий, приборостроения и электротехники «_05_ » _сентября_ 2024 г., протокол № _1_.

Заведующий кафедрой ИТП		TЭВ.Г. Чебан		
Переутверждена: «	»	20	г., протокол №	

Рекомендована на заседании учебно-методической комиссии Северодонецкого технологического института (филиал) федерального государственного бюджетного образовательного учреждения высшего образования «Луганский государственный университет имени Владимира Даля» « 16 » сентября 2024 г., протокол N 1 .

Председатель учебно-методической комиссии СТИ (филиал) ФГБОУ ВО «ЛГУ им. В.Даля»

ИМ Ю.В. Бородач

[©] Чебан В.Г., 2024 г.

[©] ФГБОУ ВО «ЛГУ им. В. Даля» СТИ (филиал), 2024 г.

1. Цели и задачи дисциплины

Цель дисциплины — изучение принципов организации микропроцессоров и микроконтроллеров; освоение средств отладки микроконтроллерных программ; приобретение навыков программирования микроконтроллеров; приобретение опыта проектирования микроконтроллерных систем управления устройствами промышленной электроники.

Задачи:

- изучение принципов организации микропроцессоров и микроконтроллеров;
- освоение средств отладки микроконтроллерных программ;
- приобретение навыков программирования микроконтроллеров;
- приобретение опыта проектирования микроконтроллерных систем управления устройствами промышленной электроники.

2. Место дисциплины в структуре ОПОП ВО

Дисциплина «Проектирование микропроцессорных систем» входит в часть, формируемую участниками образовательных отношений, дисциплин учебного плана.

Необходимыми условиями для освоения дисциплины являются:

знания физики и математики, основ измерительной техники, основ теории сигналов и цепей, физических основ полупроводниковых приборов; приборов и методов, технологии производства полупроводниковых приборов, гибридных и интегральных микросхем;

умения использования персонального компьютера на уровне пользователя;

навыки обработки информации из различных источников, в том числе с использованием современных информационных технологий.

Содержание дисциплины является логическим продолжением содержания дисциплин: «Микропроцессорная техника», «САПР электронных устройств и систем».

Служит основой для изучения следующих дисциплин: «Проектный менеджмент», приобретенные знания и умения используются при прохождении производственных практик, для выполнения и защиты ВКР.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины

Код и наименование компетенции	Индикаторы достижений компетенции (по реализуемой дисциплине)	Перечень планируемых результатов
ПК-5. Способен	ПК-5.1. Знает принципы	Знать: подготовку технических заданий
проектировать	подготовки технических	на современные электронные
устройства, приборы и	заданий на современные	устройства; принципы построения
системы электронной	электронные устройства	ЭКБ; основы проектирования и
техники с учетом		конструирования приборов и устройств
заданных требований		разных видов; основные физические и
		технологические ограничения при
		проектировании и изготовлении изделий
		микро- и наноэлектроники
	ПК-5.2. Умеет разрабатывать	Уметь: использовать стандартные
	приборы и системы	программные средства для
	электронной	компьютерного моделирования
	техники	приборов, схем, устройств и установок
		электроники и наноэлектроники
		различного функционального
		назначения

	ПИ 5 2 Висиски морумом	Decrees a voncular voncular voncular
	ПК-5.3. Владеет навыками	Владеть: навыками использования
		стандартных программных средств их
		компьютерного моделирования ЭКБ
	сборки электронной	
	компонентной базы изделий	
	микро- и наноэлектроники	
ПК-6. Способен	ПК-6.1. Знает нормативные	Знать: нормативные требования к
разрабатывать	требования к разработке	разработке проектно-конструкторской
проектно-	проектно-конструкторской	документации; правила оформления
конструкторскую	документации	отчетов о научно-исследовательской
документацию в		работе, основанных на требованиях
соответствии с		ГОСТ
методическими и	ПК-6.2. Умеет использовать	Уметь: использовать стандарты и
нормативными	стандарты и нормативные	нормативные требования при
требованиями	требования при разработке	оформлении результатов
	документации	экспериментальной деятельности, а
		также подготавливать документы для
		проектирования ЭКБ
	ПК-6.3. Владеет навыками	Владеть: навыками выпуска
	выпуска документации для	документации и работы в проектных
	организации серийного	системах
	выпуска изделий	CHO I CWU/X
ПК-7. Способен	ПК-7.1. Знает современные	Знать: фундаментальные основы
разрабатывать	технологические процессы	физических явлений и процессов,
	производства изделий микро-	лежащих в основе работы приборов и
проектирование	и наноэлектроники	устройств электроники и
технологических	и наноэлектроники	наноэлектроники
процессов	ПК-7.2. Умеет проводить	Уметь: проводить экспериментальные
производства	анализ и выбор	работы по отработке и внедрению
материалов и изделий	перспективных материалов,	новых технологических процессов
электронной техники	технологических процессов и	производства изделий электроники и
электронной техники	оборудования производства	-
	1 2	наноэлектроники
	изделий микроэлектроники	Duo nota i oni itom poposi otivi moto niii
	ПК-7.3. Владеет навыками	Владеть: опытом разработки методик
	проектирования	экспериментальной проверки
	технологических процессов	технологических процессов и
	производства изделий микро-	исследования параметров нано-
ПК О С	и наноэлектроники	структурированных материалов
ПК-8. Способен	ПК-8.1. Знает методы	Знать: методы авторского
осуществлять	авторского сопровождения	сопровождения разрабатываемых
авторское	разрабатываемых изделий	изделий микроэлектроники
сопровождение	микроэлектроники	V
разрабатываемых	ПК-8.2. Умеет анализировать	Уметь: анализировать причины брака
устройств, приборов и	причины брака выпускаемых	выпускаемых изделий
системы электронной	изделий микроэлектроники	микроэлектроники
техники на этапах	ПК-8.3. Владеет навыками	Владеть: навыками подготовки
проектирования и	подготовки дефектных	дефектных ведомостей устройств,
производства	ведомостей устройств,	приборов и систем электронной техники
	приборов и систем	
į	электронной техники	

4. Структура и содержание дисциплины

4.1. Объем учебной дисциплины и виды учебной работы

Вид ущебной реботи	Объем час	ов (зач. ед.)
Вид учебной работы	Очная форма	Заочная форма
Общая учебная нагрузка (всего)	216	216
	(6 зач. ед)	(6 зач. ед)
Обязательная аудиторная учебная нагрузка (всего) в	106	60
том числе:		
Лекции	14	8
Семинарские занятия	-	-
Практические занятия	56	16
Лабораторные работы	1	-
Курсовая работа (курсовой проект)	36	36
Другие формы и методы организации образовательного	-	-
процесса (расчетно-графические работы, групповые		
дискуссии, ролевые игры, тренинг, компьютерные		
симуляции, интерактивные лекции, семинары, анализ		
деловых ситуаций и т.n.)		
Самостоятельная работа студента (всего)	110	156
Форма аттестации	экзамен	экзамен

4.2. Содержание разделов дисциплины

Тема 1. Основные понятия и определения. Архитектура ввода/вывода микропроцессорных систем с удаленным управлением.

Принципы построения микропроцессорных систем с удаленным управлением. Критерии выбора микроконтроллеров с CISC, RISC и другой архитектуры, при проектировании МПС. Архитектура и функциональные возможности САПР Proteus 8.13 рус. Методы отладки, диагностики, моделирования и проектирования МПС.

Основные характеристики и общие понятия. Разработка интерфейсов В/В. Программное обеспечения передачи данных в порты В/В. Программируемые порты ввода/вывода. Разработка блок схем алгоритмов управления программно-аппаратными средствами.

Тема 2. Система синхронизации и сброса. Организация системы памяти в микропроцессорных система.

Внутренний генератор синхронизации. Внешний генератор синхронизации. Организация системы сброса. Управление сторожевым таймером. Программное формирование импульсов заданной длительности и периода. Система синхронизации с сетью. Способы формирования фазового сдвига.

Память программ. Внутренняя память данных. Внешняя память данных. Интерфейс внешней памяти. Передача В/В, на основе прямого доступа к памяти (DMA). Проектирование систем управления регулируемыми выпрямителями. Общие понятия и требования.

Тема 3. Информационные датчики. Аналоговая периферия и использование ее при проектировании МПС.

Датчики напряжения и тока с гальванической развязкой. Датчики температуры, влажности, давления. Датчики положения. Инкрементные и абсолютные. ИК датчик близости. ультразвуковой локатор, ИК датчик расстояния, электронный компас, камера СМОS.

Общие понятия и требования. Аналого-цифровые преобразователи. Цифроаналоговые преобразователи. Аналоговые компараторы. Формирователи опорного напряжения. Формирование импульсов специальной формы.

Тема 4. Таймеры и их использование микропроцессорных системах.

Таймеры и режимы их работы. Программируемый массив-счетчиков РСА. Программное формирование импульсов заданной длительности и периода. ШИМ регулирование.

Проектирование систем управления для автономных инверторов с ШИМ регулированием. Общие понятия и требования.

Тема 5. Контроллеры последовательной связи. Интерфейсы связи: RS-232, RS-485\422, USB.

Контроллеры I2C, SPI, UART, CAN, LAN. Передача информации. Программноаппаратное обеспечение. Использование стандартных протоколов информационного обмена.

Интерфейсы связи микропроцессорных устройств и систем нижнего уровня с вычислительными системами верхнего уровня. Передача информации. Программно-аппаратное обеспечение. Использование стандартных протоколов информационного обмена.

Тема 6. Средства отображения информации. Разработка человеко-машинного интерфейса. Построение информационно измерительных систем.

Мониторы в стоечном и в консольном исполнении. Передача информации. Программно-аппаратное обеспечение. Использование стандартных протоколов информационного обмена.

Разработка человеко-машинного интерфейса (ЧМИ) для управления периферийными устройствами и отображения текущей информации с информационных датчиков. Основные критерии для разработки ЧМИ, программное обеспечение для его реализации.

Тема 7. Построение информационно управляющих систем. Проектирование программно-аппаратных систем управления для силовой электроники. Отладка программно-аппаратных средств микропроцессорных систем и их сопровождение.

Принципы построения информационно измерительных систем. Цифровая обработка сигналов. Программно-аппаратное обеспечение.

Принципы построения информационно управляющих систем. Программно-аппаратное обеспечение.

Проектирование программно-аппаратных систем управления для силовой электроники. Проектирование системы управления резонансным инвертором.

Корректировка электрических схем, макета и программного обеспечения.

4.3. Лекции

N.C.		Объег	и часов
№ п/п	Название темы	Очная форма	Заочная форма
	Основные понятия и определения. Архитектура ввода/вывода микропроцессорных систем с удаленным управлением	2	2
	Система синхронизации и сброса. Организация системы памяти в микропроцессорных система	2	
	Информационные датчики. Аналоговая периферия и использование ее при проектировании МПС	2	2
4	Таймеры и их использование микропроцессорных системах	2	
	Контроллеры последовательной связи. Интерфейсы связи: RS-232, RS-485\422, USB	2	2
	Средства отображения информации. Разработка человекомашинного интерфейса. Построение информационно измерительных систем	2	
	Построение информационно управляющих систем. Проектирование программно-аппаратных систем управления для силовой электроники. Отладка программно-аппаратных средств микропроцессорных систем и их сопровождение	2	2
	Итого:	14	8

4.4. Практические занятия

Nº			и часов
п/п	Название темы	Очная форма	Заочная форма
	Основные понятия и определения. Архитектура ввода/вывода микропроцессорных систем с удаленным управлением	6	2
2	Система синхронизации и сброса. Организация системы памяти в микропроцессорных система	6	2
	Информационные датчики. Аналоговая периферия и использование ее при проектировании МПС	6	2
4	Таймеры и их использование микропроцессорных системах	6	2
5	Контроллеры последовательной связи. Интерфейсы связи: RS-232, RS-485\422, USB	6	2
	Средства отображения информации. Разработка человеко- машинного интерфейса. Построение информационно измерительных систем	12	2
	Построение информационно управляющих систем. Проектирование программно-аппаратных систем управления для силовой электроники. Отладка программно-аппаратных средств микропроцессорных систем и их сопровождение	14	4
	Итого:	56	16

4.5. Лабораторные работы

Лабораторные работы не предусмотрены учебным планом

4.6. Самостоятельная работа студентов

N₂			Объем	и часов
л/п	Название темы	Вид СРС	Очная форма	Заочная форма
1	Основные понятия и определения. Архитектура ввода/вывода микропроцессорных систем с удаленным управлением	Подготовка к практическим занятиям, оформление отчетов	14	20
2	Система синхронизации и сброса. Организация системы памяти в микропроцессорных система	Подготовка к практическим занятиям, оформление отчетов	14	20
3	Информационные датчики. Аналоговая периферия и использование ее при проектировании МПС	Подготовка к практическим занятиям, оформление отчетов	14	20
4	Таймеры и их использование микропроцессорных системах	Подготовка к практическим занятиям, оформление отчетов	14	20
5	Контроллеры последовательной связи. Интерфейсы связи: RS-232, RS-485\422, USB	Подготовка к практическим занятиям, оформление отчетов	14	20
6	Средства отображения информации. Разработка человеко-машинного интерфейса.	Подготовка к практическим занятиям, оформление отчетов	16	24

	Построение информационно			
	измерительных систем			
7	Построение информационно	Подготовка к практическим	24	32
	управляющих систем.	занятиям, оформление отчетов		
	Проектирование программно-			
	аппаратных систем управления			
	для силовой электроники.			
	Отладка программно-аппаратных			
	средств микропроцессорных			
	систем и их сопровождение			
	Итого:		110	156

4.7. Курсовые работы/проекты

Учебным планом предусмотрено выполнение студентами курсовой работы.

Тематика курсовой работы:

- 1. Программно-аппаратная система управления регулируемым однофазным выпрямителем на основе использования микропроцессорной техники.
- 2. Программно-аппаратная система управления регулируемым трехфазным выпрямителем на основе использования микропроцессорной техники.
- 3. Программно-аппаратная система управления инвертором с жесткой коммутацией силовых элементов на основе использования микропроцессорной техники.
- 4. Программно-аппаратная система управления квазирезонансным инвертором на основе использования микропроцессорной техники.
- 5. Программно-аппаратная система управления многофазным квазирезонансным инвертором на основе использования микропроцессорной техники.
- 6. Программно-аппаратная система управления резонансным инвертором на основе использования микропроцессорной техники.

Курсовая работа состоит из пояснительной записки (ПЗ) и графического материала. Объем ПЗ: 15-20 страниц рукописного или печатного текста.

Содержание ПЗ: титульный лист, задание на курсовую работу, реферат, содержание, введение, основная расчетная часть, выводы, список литературы, приложения.

Основная расчетная часть должна включать: структурную схему и описание работы устройства; выбор элементной базы; разработку принципиальной схемы; разработку программного обеспечения; результаты имитационного моделирование работы устройства и программы.

5. Образовательные технологии

Преподавание дисциплины ведется с применением следующих видов образовательных технологий:

- традиционные объяснительно-иллюстративные технологии, которые обеспечивают доступность учебного материала для большинства студентов, системность, отработанность организационных форм и привычных методов, относительно малые затраты времени;
- технологии проблемного обучения, направленные на развитие познавательной активности, творческой самостоятельности студентов и предполагающие последовательное и целенаправленное выдвижение перед студентом познавательных задач, разрешение которых позволяет студентам активно усваивать знания (используются поисковые методы; постановка познавательных задач);
- технологии развивающего обучения, позволяющие ориентировать учебный процесс на потенциальные возможности студентов, их реализацию и развитие;
- технологии концентрированного обучения, суть которых состоит в создании максимально близкой к естественным психологическим особенностям человеческого

восприятия структуры учебного процесса и которые дают возможность глубокого и системного изучения содержания учебных дисциплин за счет объединения занятий в тематические блоки;

- технологии модульного обучения, дающие возможность обеспечения гибкости процесса обучения, адаптации его к индивидуальным потребностям и особенностям обучающихся (применяются, как правило, при самостоятельном обучении студентов по индивидуальному учебному плану);
- технологии дифференцированного обучения, обеспечивающие возможность создания оптимальных условий для развития интересов и способностей студентов, в том числе и студентов с особыми образовательными потребностями, что позволяет реализовать в культурно-образовательном пространстве университета идею создания равных возможностей для получения образования;
- технологии активного (контекстного) обучения, с помощью которых осуществляется моделирование предметного, проблемного и социального содержания будущей профессиональной деятельности студентов (используются активные и интерактивные методы обучения) и т.д.

Максимальная эффективность педагогического процесса достигается путем конструирования оптимального комплекса педагогических технологий и (или) их элементов на личностно-ориентированной, деятельностной, диалогической основе и использования необходимых современных средств обучения.

Формы контроля освоения дисциплины

Текущая аттестация студентов производится в дискретные временные интервалы лектором и преподавателем(ями), ведущими лабораторные работы и практические занятия по дисциплине в следующих формах:

- контрольные вопросы к практическим занятиям;
- тесты;
- защита курсовой работы;
- вопросы к экзамену.

Фонды оценочных средств, включающие контрольные вопросы, тесты и методы контроля, позволяющие оценить результаты текущей и промежуточной аттестации обучающихся по данной дисциплине, помещаются в приложении к рабочей программе в соответствии с «Положением о фонде оценочных средств».

Промежуточная аттестация по результатам освоения дисциплины проходит в форме устного экзамена (включает в себя ответ на теоретические вопросы), защита курсовой работы. Студенты, выполнившие 75% текущих и контрольных мероприятий на «отлично», а остальные 25 % на «хорошо», имеют право на получение итоговой отличной оценки.

В экзаменационную ведомость и зачетную книжку выставляются оценки по национальной шкале, приведенной в таблице.

Характеристика знания предмета и ответов	Экзамены
Обучающийся глубоко и в полном объёме владеет программным	онрипто
материалом. Грамотно, исчерпывающе и логично его излагает в	(5)
устной или письменной форме. При этом знает рекомендованную	
литературу, проявляет творческий подход в ответах на вопросы и	
правильно обосновывает принятые решения, хорошо владеет	
умениями и навыками при выполнении практических задач.	
Обучающийся знает программный материал, грамотно и по сути	
излагает его в устной или письменной форме, допуская	хорошо
незначительные неточности в утверждениях, трактовках,	(4)
определениях и категориях или незначительное количество	
ошибок. При этом владеет необходимыми умениями и навыками	
при выполнении практических задач.	

Обучающийся знает только основной программный материал,	
допускает неточности, недостаточно чёткие формулировки,	
непоследовательность в ответах, излагаемых в устной или	удовлетворительно
письменной форме. При этом недостаточно владеет умениями и	(3)
навыками при выполнении практических задач. Допускает до 30 %	
ошибок в излагаемых ответах.	
Обучающийся не знает значительной части программного	неудовлетворительно
Обучающийся не знает значительной части программного материала. При этом допускает принципиальные ошибки в	• •
	(2)
материала. При этом допускает принципиальные ошибки в	(2)
материала. При этом допускает принципиальные ошибки в доказательствах, в трактовке понятий и категорий, проявляет	(2)

6. Учебно-методическое и программно-информационное обеспечение дисциплины

- а) Основная литература:
- 1. Ревич Ю. В. Программирование микроконтроллеров AVR: от Arduino к ассемблеру. СПб.: БХВ-Петербург, 2020. 448 с: URL: https://djvu.online/file/oQEDc0eZ0DvOF (дата обращения: 30.08.2024).
- 2. Кузнецов Д.Н. Современные микроконтроллеры в системах измерения, управления, обработки и отображения информации : учеб. пособие для обучающихся образоват. учреждений высш. проф. образования / Д. Н. Кузнецов ; ГОУВПО «ДОННТУ». Донецк : ДОННТУ, 2020. 400 с. : ил., табл. URL: https://drive.google.com/file/d/1UHZUPHh_v_1_oiOibWFEfAJiYIwYHRbA/view?usp=sharing.
- 3. Дьяков, И. А. Микропроцессорные системы : архитектура микроконтроллеров семейства MCS-51 : учебное пособие / И. А. Дьяков ; Тамбовский государственный технический университет. Тамбов : Тамбовский государственный технический университет (ТГТУ), 2014. 79 с. Режим доступа: по подписке. URL: https://biblioclub.ru/index.php?page=book&id=277684. Текст : электронный.

б) Дополнительная литература:

- 1. Микропроцессорные системы: Учебное пособие для вузов / Е.К. Александров, Р.И. Грушвицкий, М.С. Куприянов, О.Е. Мартынов, Д.И. Панфилов, Т.В. Ремизевич, Ю.С. Татаринов, Е.П. Угрюмов, И.И. Шагурин; Под общ. ред. Д.В. Пузанкова. СПб.: Политехника, 2002. 935 с. URL: https://moodle.dstu.education/mod/resource/view.php?id=98663. Режим доступа: для авториз. пользователей. Текст: электронный.
- 2. Бойко В. И. Схемотехника электронных систем. Микропроцессоры и микроконтроллеры/ В. И. Бойко, А. Н. Гуржий, В. Я. Жуйков, А. А. Зори, В. М. Спивак, Т. А. Терещенко, Ю. С. Петергеря. СПб.: БХВ-Петербург, 2004. 464 с. URL:. https://moodle.dstu.education/mod/resource/view.php?id=98662. Режим доступа: для авториз. пользователей. Текст: электронный.
- 3. Белов, А. В. Программирование микроконтроллеров для начинающих и не только / А. В. Белов. Санкт-Петербург : Наука и Техника, 2016. 352 с. ISBN 978-5-94387-867-1. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/60657.html.
- 4. Белов, А.В. Самоучитель разработчика устройств на микроконтроллерах AVR / А.В. Белов . 2-е изд., перераб. и доп. СПб. : Наука и техника, $2010 \cdot -528$ с.
- 5. Калабеков, Б.А. Цифровые устройства и микропроцессорные системы: Учебник. Горячая линия-Телеком, 2003. 336 с. URL: https://moodle.dstu.education/mod/resource/view.php?id=98661. Режим доступа: для авториз. пользователей. Текст : электронный.

- в) Интернет-ресурсы:
- 1. Министерство образования и науки Российской Федерации http://минобрнауки.рф
- 2. Министерства природных ресурсов и экологии Российской Федерации http://www.mnr.gov.ru
 - 3. Федеральная служба по надзору в сфере образования и науки http://obrnadzor.gov.ru
- 4. Министерство образования и науки Луганской Народной Республики https://minobr.su
- 5. Министерство природных ресурсов и экологической безопасности ЛНР https://www.mprlnr.su
 - 6. Народный совет Луганской Народной Республики https://nslnr.su
- 7. Портал Федеральных государственных образовательных стандартов высшего образования http://fgosvo.ru
 - 8. Федеральный портал «Российское образование» http://www.edu.ru
- 9. Информационная система «Единое окно доступа к образовательным ресурсам» http://window.edu.ru
 - 10. Федеральный центр информационно-образовательных ресурсов http://fcior.edu.ru

Электронные библиотечные системы и ресурсы:

- 1. Электронно-библиотечная система «Консультант студента» http://www.studentlibrary.ru/cgi-bin/mb4x
 - 2. Электронно-библиотечная система «StudMed.ru» https://www.studmed.ru
 - 3. Научная электронная библиотека eLIBRARI.RU» http://elibrary.ru
 - 4. ЭБС Издательства «ЛАНЬ» https://e.lanbook.com

Информационный ресурс библиотеки образовательной организации

1. Научная библиотека имени А. Н. Коняева – http://biblio.dahluniver.ru

8. Материально-техническое обеспечение дисциплины

Лекционные занятия проводятся с использованием комплекта электронных презентаций в аудитории, оснащенной презентационной техникой (проектор, экран, ноутбук).

Практические занятия проводятся с использованием компьютеризированных аудиторий.

Рабочие места преподавателя и студентов в учебной лаборатории оснащены компьютерами с доступом в Интернет, предназначенными для работы в указанных специализированных компьютерных программах и средах.

Программное обеспечение:

	Бесплатное		
Функциональное назначение	программное обеспечение	Ссылки	
Офисный пакет	Libre Office 6.3.1	https://www.libreoffice.org/ https://ru.wikipedia.org/wiki/LibreOffice	
Операционная система	UBUNTU 19.04	https://ubuntu.com/ https://ru.wikipedia.org/wiki/Ubuntu	
Браузер	Firefox Mozilla	http://www.mozilla.org/ru/firefox/fx	
Браузер	Opera	http://www.opera.com	
Почтовый клиент	Mozilla Thunderbird	http://www.mozilla.org/ru/thunderbird	
Файл-менеджер	Far Manager	http://www.farmanager.com/download.php	
Архиватор	7Zip	http://www.7-zip.org/	
Графический редактор	GIMP (GNU Image Manipulation Program)	http://www.gimp.org/ http://gimp.ru/viewpage.php?page_id=8 http://ru.wikipedia.org/wiki/GIMP	
Редактор PDF	PDFCreator	http://www.pdfforge.org/pdfcreator	
Аудиоплеер	VLC	http://www.videolan.org/vlc/	

8. Фонд оценочных средств для проведения текущего контроля и промежуточной аттестации по дисциплине

Паспорт фонда оценочных средств по учебной дисциплине «Проектирование микропроцессорных систем»

Перечень компетенций, формируемых в результате освоения учебной дисциплины

	перечень комп	иетенций, формируемых Т	к в результате о	своения учеоной дист	Типлины
№ п/п	Код контролируемой компетенции	Формулировка контролируемой компетенции	Индикаторы достижений компетенции (по реализуемой дисциплине)	Контролируемые темы учебной дисциплины, практики	Этапы формирова- ния (семестр изучения)
1.	ПК-5	Способен проектировать устройства, приборы и системы электронной техники с учетом заданных требований	ПК-5.1. ПК-5.2. ПК-5.3.	Тема 1. Тема 2. Тема 3. Тема 4. Тема 5. Тема 6. Тема 7.	2
2.	ПК-6	Способен разрабатывать проектно-конструкторскую документацию в соответствии с методическими и нормативными требованиями	ПК-6.1. ПК-6.2. ПК-6.3.	Тема 1. Тема 2. Тема 3. Тема 4. Тема 5. Тема 6. Тема 7.	2
3.	ПК-7	Способен разрабатывать технические задания на проектирование технологических процессов производства материалов и изделий электронной техники	ПК-7.1. ПК-7.2. ПК-7.3.	Тема 1. Тема 2. Тема 3. Тема 4. Тема 5. Тема 6. Тема 7.	2
4.	ПК-8	Способен осуществлять авторское сопровождение разрабатываемых устройств, приборов и системы электронной техники на этапах проектирования и производства	ПК-8.1. ПК-8.2. ПК-8.3.	Тема 1. Тема 2. Тема 3. Тема 4. Тема 5. Тема 6. Тема 7.	2

Показатели и критерии оценивания компетенций, описание шкал оценивания

№ п/ п	Код компетенции	Индикаторы достижений компетенции	Перечень планируемых результатов	Контролируемые темы учебной дисциплины	Наименование оценочного средства
1.	ПК-5	ПК-5.1. ПК-5.2. ПК-5.3.	технических заданий на современные электронные устройства; принципы построения ЭКБ; основы проектирования и конструирования приборов и устройств разных видов; основные физические и технологические ограничения при проектировании и изготовлении изделий микро- и наноэлектроники. Уметь: использовать стандартные программные средства для компьютерного моделирования приборов, схем, устройств и установок электроники и наноэлектроники и наноэлектроники и наноэлектроники и наноэлектроники различного функционального назначения. Владеть: навыками	Тема 2, Тема 3, Тема 4, Тема 5, Тема 6, Тема 7.	Контрольные вопросы к практическим занятиям, тесты, вопросы к экзамену
2.	ПК-6	ПК-6.1.	использования стандартных программных средств их компьютерного моделирования ЭКБ Знать: нормативные		Контрольные
		ПК-6.2. ПК-6.3.	разработке проектно- конструкторской документации; правила	Тема 3, Тема 4,	вопросы к практическим занятиям, тесты, вопросы к экзамену

		<u> </u>	T		
			исследовательской		
			работе, основанных на		
			требованиях ГОСТ.		
			Уметь: использовать		
			стандарты и		
			нормативные		
			требования при		
			оформлении		
			результатов		
			экспериментальной		
			деятельности, а также		
			подготавливать		
			документы для		
			проектирования ЭКБ.		
			Владеть: навыками		
			выпуска документации		
			и работы в проектных		
			системах		
3.	ПК-7	ПК-7.1.	Знать:	Тема 1,	Контрольные
		ПК-7.2.	фундаментальные	Тема 2,	вопросы к
		ПК-7.3.	основы физических	Тема 3,	практическим
			явлений и процессов,	Тема 4,	занятиям, тесты,
			лежащих в основе		вопросы к
			,		экзамену
			устройств электроники	-	,
			и наноэлектроники.	·	
			Уметь: проводить		
			экспериментальные		
			работы по отработке и		
			внедрению новых		
			технологических		
			процессов		
			производства изделий		
			электроники и		
			наноэлектроники.		
			Владеть: опытом		
			разработки методик		
			экспериментальной		
			проверки		
			технологических		
			процессов и		
			*		
			исследования		
			параметров нано-		
			структурированных		
			материалов		

4.	ПК-8	ПК-8.1.	Знать: методы	Тема 1,	Контрольные
		ПК-8.2.	авторского	Тема 2,	вопросы к
		ПК-8.3.	сопровождения	Тема 3,	практическим
			разрабатываемых	Тема 4,	занятиям, тесты,
			изделий	Тема 5,	вопросы к
			микроэлектроники.	Тема 6,	экзамену
			Уметь: анализировать	Тема 7.	-
			причины брака		
			выпускаемых изделий		
			микроэлектроники.		
			Владеть: навыками		
			подготовки дефектных		
			ведомостей устройств,		
			приборов и систем		
			электронной техники		

8.1. Контрольные вопросы к практическим занятиям:

- 1. Изложите методологию проектирования систем на основе МП и МК.
- 2. В чем преимущества и сложность применения МК?
- 3. Каково содержание системного этапа проектирования и этапа разработки структуры MПС?
 - 4. Каковы критерии выбора МП?
 - 5. Каковы варианты разработки аппаратуры (ядра МПС)?
 - 6. Каковы варианты разработки системы ввода-вывода?
 - 7. Что называют основным, тестовым и диагностическим ПО?
- 8. Что делать на этапах отладки аппаратуры; комплексной проверки и настройки; оформления технической документации?
 - 9. Поясните понятия кросс-системы и системы развития.
 - 10. Как осуществляется контроль и диагностика МП и МК систем?
 - 11. Назовите отличительные особенности однокристальных микроконтроллеров (МК).
- 12. Расскажите о процедуре программного обмена, обмен по прерыванию, прямой доступ к памяти.
 - 13. Расскажите о процедуре обмена по прерыванию.
 - 14. Расскажите о процедуре прямого доступа к памяти.
 - 15. Что делает устройство управления и синхронизации МК?
 - 16. Расскажите о процедуре сброса МК.
 - 17. Для чего служат параллельные порты МК?
 - 18. Для чего служат последовательные порты МК?
 - 19. Как работают встроенные ЦАП?
 - 20. Как работают встроенные АЦП?
 - 21. Как использовать таймеры-счётчики МК.
 - 22. Для чего служит сторожевой таймер?
 - 23. Как работает система прерываний в МК?
 - 24. Для чего нужен режим холостого хода МК?
 - 25. Для чего нужен режим пониженного энергопотребления МК (спящий режим)?
 - 26. Как работает в МК защита от пропадания напряжения?
 - 27. Что такое «Монитор напряжения питания»?
 - 28. Как осуществляется ввод информации с датчиков?
 - 29. Расскажите о процедурах «Опрос двоичного датчика», «Ожидание события».
 - 30. Как устранить эффект дребезга контактов?

- 31. Как осуществляется подсчет числа импульсов между двумя событиями?
- 32. Как осуществляется подсчет числа импульсов за заданный промежуток времени?
- 33. Как формируются статические выходные сигналы?
- 34. Как формируются импульсные выходные сигналы?
- 35. Как осуществляется генерация периодического управляющего воздействия?
- 36. Как формируется программная временная задержка?
- 37. Как формируется временная задержка с помощью таймера?
- 38. Как измерять временные интервалы?
- 39. Как можно преобразовать коды в МК?
- 40. Как преобразовать параллельный код в последовательный?

Критерии и шкала оценивания по оценочному средству контрольные вопросы к практическим занятиям

Шкала оценивания (интервал баллов)	Критерий оценивания	
5	Ответ представлен на высоком уровне (студент в полном объеме осветил рассматриваемый вопрос, привел аргументы в пользу своих суждений, владеет соответствующей научной терминологией)	
4	Ответ представлен на среднем уровне (студент в целом осветил рассматриваемый вопрос, привел аргументы в пользу своих суждений, допустив некоторые неточности)	
3	Ответ представлен на низком уровне (студент допустил существенные неточности, изложил материал с ошибками, не владеет в достаточной степени соответствующей научной терминологией)	
2	Ответ представлен на неудовлетворительном уровне или не представлен (студент не готов отвечать)	

8.2. Тесты:

- 1. Что такое микропроцессор?
- а) БИС, предназначенная для выполнения арифметических и логических операций с высокой скоростью выполнения этого процесса;
- б) программно-управляемое устройство, предназначенное для обработки цифровой информации и управления процессом этой обработки, выполненное в виде одной или нескольких БИС;
- в) программно-управляемое устройство, выполненное в виде одной большой интегральной схемы и предназначенное для быстрого выполнения арифметических и логических операций.
 - 2. Для каких целей предназначены процессоры ЦОС?
 - а) Для интенсивных научных расчетов;
 - б) Для обработки сигналов в реальном масштабе времени;
- в) Для построения законченных систем сбора и обработки информации минимальной конфигурации.
- 3. Какие методы оценки производительности микропроцессоров применялись на первых этапах развития микропроцессорной техники?
 - а) по тактовой частоте;
- б) по времени выполнения специально разработанных пакетов программ для выполнения операций с фиксированной точкой;
 - в) по времени выполнения специально разработанных пакетов программ для выполнения

операций с плавающей точкой;

- г) по времени выполнения специально разработанных пакетов программ, включающих операции с фиксированной запятой и плавающей точкой.
 - 4. Что такое физическое адресное пространство?
- а) одномерный массив элементов, каждому из которых присвоен свой номер, называемый адресом;
- б) массив адресуемых элементов, организованный в виде определенной структуры, задаваемой системным программистом;
- в) массив адресуемых элементов, организованный в виде определенной структуры, определяемой прикладным программистом в зависимости от особенностей структуры данных своей программы.
 - 5. Какие из параметров НЕ входят в понятие интерфейса?
 - а) схемы согласования уровней сигналов;
 - б) алгоритмы передачи сигналов;
 - в) правила интерпретации сигналов устройствами;
 - г) режимы адресации команд ввода-вывода.
 - 6. Каковы особенности обмена информацией по прерыванию в МПС?
 - 1) инициатором обмена выступает внешнее устройство;
 - 2) инициатором обмена выступает микропроцессор;
- 3) обмен запрограммирован в теле основной программы, выполняемой микропроцессором.
- 7. Каковы недостатки оценки производительности микропроцессоров по их тактовой частоте?
- 1) она не позволяет сравнить производительность микропроцессоров с различной архитектурой;
- 2) используемые при этом тесты полностью локализуются в кэше современных микропроцессоров, что не характерно для практических задач;
- 3) при получении такой оценки не учитываются особенности технологического процесса производства МП.
- 8. Каковы особенности обмена информацией в МПС по готовности внешнего устройства?
 - а) Инициатором обмена выступает внешнее устройство;
 - б) инициатором обмена выступает микропроцессор;
- в) обмен запрограммирован в теле основной программы, выполняемой микропроцессором, при получении сигнала от внешнего устройства;
- г) процедура обмена начинается с получением микропроцессором сигнала от внешнего устройства.
 - 9. Какие особенности работы процессоров DSP?
 - а) Обработка больших объёмов данных в реальном масштабе времени;
 - б) Обмен с внешними устройствами.
 - в) Многопользовательский режим обработки нескольких сигналов.
 - 10. Какие особенности контроля МПС на этапе разработки?
 - а) отсутствие отработанных тестовых программ;
 - б) большая вероятность появления нескольких неисправностей одновременно;
- в) необходимость проверки работоспособности при всех возможных сочетаниях состояния внутренних регистров БИС;
 - г) возможность появления ошибок проектирования;
 - д) неопределенность причины отказа: ошибки в аппаратуре или ПО.
 - 11. Стек в микроконтроллере работает по принципу:
 - а) последний пришел первый ушел;
 - б) первый пришел последний ушел;
 - в) первый пришел первый ушел;

- г) последний пришел последний ушел.
- 12. Что реализует возможности возврата из подпрограммы к основной программе?
- а) Прерывания;
- б) Стек;
- в) Программный счетчик;
- г) Таймер.
- 13. Что произойдет в микроконтроллере, если в результате выполнения операции произошел выход за границы байта, например, при умножении либо сложении?
 - а) Установится флаг переноса (С) в регистре состояния;
 - б) Установится флаг отрицательного значения (N) в регистре состояния;
 - в) Сбросится флаг потетрадного переноса (Н) в регистре состояния;
 - г) Произойдет зависание микроконтроллера.
 - 14. Что такое микропроцессор?
- а) БИС, предназначенная для выполнения арифметических и логических операций с высокой скоростью выполнения этого процесса;
- б) программно-управляемое устройство, предназначенное для обработки цифровой информации и управления процессом этой обработки, выполненное в виде одной или нескольких БИС;
- в) программно-управляемое устройство, выполненное в виде одной большой интегральной схемы и предназначенное для быстрого выполнения арифметических и логических операций;
 - г) БИС, предназначенная для выполнения и управления процессами.

Критерии и шкала оценивания по оценочному средству тесты

Шкала оценивания (интервал баллов)	Критерий оценивания
5	Тесты выполнены на высоком уровне (правильные ответы даны на 90-100% тестов)
4	Тесты выполнены на среднем уровне (правильные ответы даны на 75-89% тестов)
3	Тесты выполнены на низком уровне (правильные ответы даны на 50-74% тестов)
2	Тесты выполнены на неудовлетворительном уровне (правильные ответы даны менее чем на 50% тестов)

8.3. Оценочные средства для промежуточной аттестации (экзамен)

- 1. Дайте определение, что такое 8 битные микроконтроллеры с RISC архитектурой.
- 2. Дайте определение, что такое 32 битные микроконтроллеры с RISC архитектурой. Основные понятия и определения.
 - 3. Опишите структуру AVR контроллеров и логическую организацию.
 - 4. Опишите структуру ARM контроллеров и логическую организацию.
 - 5. Опишите структуру РІС контроллеров и логическую организацию.
- 6. Опишите структуру цифрового сигнального процессора и его логическую организацию.
 - 7. Что представляют собой регистры специальных функций AVR контроллеров?
 - 8. Что представляют собой регистры специальных функций ARM контроллеров?
 - 9. Что представляют собой регистры специальных функций РІС контроллеров?
- 10. Что представляют собой регистры специальных функций цифрового сигнального процессора?
 - 11. Что представляет собой память программ AVR контроллеров?

- 12. Что представляет собой память программ ARM контроллеров?
- 13. Что представляет собой память программ РІС контроллеров?
- 14. Что представляет собой память программ цифрового сигнального процессора?
- 15. Что такое внутренняя память данных AVR контроллеров?
- 16. Что представляет собой внутренняя память данных ARM контроллеров?
- 17. Что представляет собой внутренняя память данных РІС контроллеров?
- 18. Что представляет собой внутренняя память данных AVR контроллеров?
- 19. Что представляет собой внешняя память данных для РІС контроллеров?
- 20. Что представляет собой внешняя память данных для ARM контроллеров?
- 21. Что представляет собой внешняя память данных для ARM контроллеров?
- 22. Что представляет собой внешняя память данных для цифрового сигнального процессора?
 - 23. Опишите структуру портов ввода/вывода в AVR контроллере.
 - 24. Опишите структуру портов ввода/вывода ARM контроллере.
 - 25. Опишите структуру портов ввода/вывода РІС контроллеров.
 - 26. Опишите структуру портов ввода/вывода в цифровом сигнальном процессоре.
 - 27. Что представляет собой внутренняя и внешняя синхронизация в AVR контроллере?
 - 28. Что представляет собой внутренняя и внешняя синхронизация в ARM контроллере?
 - 29. Что представляет собой внутренняя и внешняя синхронизация в РІС контроллере?
- 30. Что представляет собой внутренняя и внешняя синхронизация в цифровом сигнальном процессоре?
 - 31. Что представляет собой организация системы сброса МК С8051Fxxx?
 - 32. Как организуется управление сторожевым таймером МК С8051Fxxx?
 - 33. Опишите логику прерываний МК С8051Fxxx
 - 34. Что представляют собой источники и приоритет прерываний МК С8051Fxxx?
 - 35. Что такое режим IDLE МК?
 - 36. Что такое режим STOP МК?
 - 37. Что собой представляют таймеры и режимы их работы МК?
 - 38. Что представляет собой программируемый массив счетчиков МК?
 - 39. Что представляет собой контроллер SMBus MK?
 - 40. Что представляет собой контроллер SPI МК С8051Fxxx?
 - 41. Что представляет собой контроллер UART МК С8051Fxxx?
 - 42. Что представляют собой аналого-цифровые преобразователи МК С8051Fxxx?
 - 43. Что представляют собой цифро-аналоговые преобразователи МК С8051Fxxx?
 - 44. Приведите схему формирования опорного напряжения МК С8051Fxxx.
 - 45. Что представляют собой аналоговые компараторы МК С8051Fxxx?
- 46. Опишите процесс разработки аппаратных и программных средств систем на базе МК C8051Fxxx.
 - 47. Перечислите наборы средств проектирования МК C8051Fxxx.
 - 48. Что представляет собой интегрированная среда разработки МК С8051Fxxx?
 - 49. Что такое мастер конфигурации МК С8051Fxxx?
 - 50. Какие возможности дает программное обеспечение фирмы Keil?
- 51. Перечислите особенности системы команд и приемы программирования МК C8051Fxxx.
 - 52. Приведите особенности программирования таймеров МК С8051Fxxx.
 - 53. Как происходит обработка прерываний МК С8051Fxxx?
- 54. Приведите особенности программирования контроллеров последовательной связи MK C8051Fxxx.
 - 55. Как организуется управление мощными нагрузками МК С8051Fxxx:
- 56. Как организуется подключение светодиодных и жидкокристаллических дисплеев МК C8051Fxxx?
 - 57. Как организуется подключение клавиатур МК С8051Fxxx?

- 58. Где используются аналоговые периферийные устройства МК С8051Fxxx?
- 59. Как организуется цифровая обработка сигналов МК С8051Fxxx?
- 60. Приведите особенности программирования энергонезависимой памяти МК C8051Fxxx.
- 61. Приведите особенности проектирования алгоритмов управления на основе конечноавтоматных моделей МК C8051Fxxx.
- 62. Что представляют собой и каковы особенности микроконтроллеров RISC архитектурой?
- 63. Что представляют собой и каковы особенности микроконтроллеров семейства AVR контроллеров?
- 64. Что представляют собой и каковы особенности кварцевых генераторов AVR контроллеров?
 - 65. Что представляет собой файл регистров общего назначения AT90S2313?
 - 66. Что представляет собой файл регистров общего назначения AVR контроллеров?
 - 67. Какие вам известны режимы адресации AVR контроллеров?
 - 68. Что представляет собой арифметико-логическое устройство AVR контроллеров?
 - 69. Что представляет собой память программ AVR контроллеров?
 - 70. Что представляет собой EEPROM память данных AVR контроллеров?
 - 71. Что представляет собой оперативная память данных AVR контроллеров?
- 72. Что такое время выполнения команд? Что представляет собой регистр состояния AVR контроллеров?
 - 73. Что представляет собой указатель стека SP AVR контроллеров?
 - 74. Что представляет собой перезапуск микроконтроллера (сброс) AVR контроллеров?
- 75. Что такое обработка прерываний, внешние прерывания, время реакции на прерывание AVR контроллеров?
 - 76).Опишите режимы пониженного энергопотребления AVR контроллеров.
- 77. Что представляют собой таймеры/счетчики, 8-разрядный таймер/счетчик AVR контроллеров?
- 78. Что представляют собой таймеры/счетчики, 16-разрядный таймер/счетчик AVR контроллеров?
 - 79. Что представляет собой сторожевой таймер AVR контроллеров?
 - 80. Как реализуются чтение и запись в энергонезависимую память AVR контроллеров?
 - 81. Как реализуются управление UART AVR контроллеров?
 - 82. Что представляет собой аналоговый компаратор AVR контроллеров?
 - 83. Что представляют собой порты ввода/вывода AVR контроллеров?
 - 84. Перечислите набор команд AVR контроллеров.
 - 85. Как организуется управление светодиодами или оптронами AVR контроллеров?

Критерии и шкала оценивания по оценочному средству промежуточный контроль (экзамен)

Шкала оценивания (интервал баллов)	Критерий оценивания
	Студент глубоко и в полном объёме владеет программным материалом. Грамотно, исчерпывающе и логично его излагает в устной или письменной форме. При этом знает рекомендованную литературу, проявляет творческий подход в ответах на вопросы и правильно обосновывает принятые решения, хорошо владеет умениями и навыками при выполнении практических задач

хорошо (4)	Студент знает программный материал, грамотно и по сути		
	излагает его в устной или письменной форме, допуская		
	незначительные неточности в утверждениях, трактовках,		
	определениях и категориях или незначительное количество		
	ошибок. При этом владеет необходимыми умениями и		
	навыками при выполнении практических задач		
удовлетворительно (3)	Студент знает только основной программный материал,		
	допускает неточности, недостаточно чёткие формулировки,		
	непоследовательность в ответах, излагаемых в устной или		
	письменной форме. При этом недостаточно владеет умениями		
	и навыками при выполнении практических задач. Допускает		
	до 30% ошибок в излагаемых ответах.		
неудовлетворительно (2)	Студент не знает значительной части программного		
	материала. При этом допускает принципиальные ошибки в		
	доказательствах, в трактовке понятий и категорий, проявляет		
	низкую культуру знаний, не владеет основными умениями и		
	навыками при выполнении практических задач. Студент		
	отказывается от ответов на дополнительные вопросы		

9. Особенности организации обучения для лиц с ограниченными возможностями здоровья и инвалидов

При необходимости рабочая программа учебной дисциплины может быть адаптирована для обеспечения образовательного процесса инвалидов и лиц с ограниченными возможностями здоровья, в том числе с применением электронного обучения и дистанционных образовательных технологий.

Для этого требуется заявление студента (его законного представителя) и заключение психолого-медико-педагогической комиссии (ПМПК). В случае необходимости обучающимся из числа лиц с ограниченными возможностями здоровья (по заявлению обучающегося), а для инвалидов также в соответствии с индивидуальной программой реабилитации инвалида могут предлагаться следующие варианты восприятия учебной информации с учетом их индивидуальных психофизических особенностей:

- создание текстовой версии любого нетекстового контента для его возможного преобразования в альтернативные формы, удобные для различных пользователей;
- создание контента, который можно представить в различных видах без потери данных или структуры, предусмотреть возможность масштабирования текста и изображений без потери качества, предусмотреть доступность управления контентом с клавиатуры;
- создание возможностей для обучающихся воспринимать одну и ту же информацию из разных источников, например, так, чтобы лица с нарушениями слуха получали информацию визуально, с нарушениями зрения аудиально;
- применение программных средств, обеспечивающих возможность освоения навыков и умений, формируемых дисциплиной (модулем), за счёт альтернативных способов, в том числе виртуальных лабораторий и симуляционных технологий;
- применение электронного обучения, дистанционных образовательных технологий для передачи информации, организации различных форм интерактивной контактной работы обучающегося с преподавателем, в том числе вебинаров, которые могут быть использованы для проведения виртуальных лекций с возможностью взаимодействия всех участников дистанционного обучения, проведения семинаров, выступления с докладами и защиты выполненных работ, проведения тренингов, организации коллективной работы;
- применение электронного обучения, дистанционных образовательных технологий для организации форм текущего и промежуточного контроля;
- увеличение продолжительности сдачи обучающимся инвалидом или лицом с ограниченными возможностями здоровья форм промежуточной аттестации по отношению к установленной продолжительности их сдачи:
- продолжительность сдачи зачёта или экзамена, проводимого в письменной форме, не более чем на 90 минут;
- продолжительность подготовки обучающегося к ответу на зачёте или экзамене, проводимом в устной форме, не более чем на 20 минут;
- продолжительность выступления обучающегося при защите курсовой работы не более чем на 15 минут.

Лист изменений и дополнений

№ п/п	Виды дополнений и изменений с указанием страниц	Дата и номер протокола заседания кафедры (кафедр), на котором были рассмотрены и одобрены изменения и дополнения	Подпись (с расшифровкой) заведующего кафедрой (заведующих кафедрами)
1.			
2.			
3.			
4.			