МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Луганский государственный университет имени Владимира Даля» (ФГБОУ ВО «ЛГУ им. В. Даля»)

Северодонецкий технологический институт Кафедра информационных технологий, приборостроения и электротехники

УТВЕРЖДАЮ: Врио. директора СТИ (филиал) ФГБОУ ВО «ЛГУ им. В. Даля» Ю.В. Бородач 2024 года

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«Моделирование электронных устройств и систем»

По направлению подготовки: 11.04.04 Электроника и наноэлектроника

Магистерская программа «Промышленная электроника и микропроцессорная техника»

Лист согласования РПУД

Рабочая программа учебной дисциплины «Моделирование электронных устройств и систем» по направлению подготовки 11.04.04 Электроника и наноэлектроника (магистерская программа «Промышленная электроника и микропроцессорная техника») – 25 с.

Рабочая программа учебной дисциплины «Моделирование электронных устройств и систем» разработана в соответствии Федеральным государственным образовательным стандартом высшего образования по направлению подготовки 11.04.04 Электроника и наноэлектроника, утвержденным приказом Министерства образования и науки Российской Федерации от 22 сентября 2017 г. № 959 (с изменениями и дополнениями в соответствии с приказами Министерства образования и науки Российской Федерации № 1456 от 26.11.2020 г., № 82 от 08.02.2021 г.).

СОСТАВИТЕЛЬ:

к.т.н., доцент Чебан В.Г.

Рабочая программа дисциплины утверждена на заседании кафедры информационных технологий, приборостроения и электротехники « 05 » сентября 2024 г., протокол № 1.

Mans

Заведующий кафедрой ИТПЭ_	В.Г. Чебан	
Переутверждена: «»	20г., протокол №	•

Рекомендована на заседании учебно-методической комиссии Северодонецкого технологического института (филиал) федерального государственного бюджетного образовательного учреждения высшего образования «Луганский государственный университет имени Владимира Даля» «_16_» _сентября_ 2024 г., протокол №_1_.

Председатель учебно-методической комиссии СТИ (филиал) ФГБОУ ВО «ЛГУ им. В.Даля»

И.В. Бородач

[©] Чебан В.Г., 2024 г.

[©] ФГБОУ ВО «ЛГУ им. В. Даля» СТИ (филиал), 2024 г.

1. Цели и задачи дисциплины

Цель дисциплины — формирование навыков моделирования и анализа устройств электронной техники с использованием математического аппарата, пакетов программ автоматизации математических расчетов, проектирования и анализа электронных схем, приемов программирования на современной высокотехнологичной объектно-ориентированной базе.

Задачи:

- изучение средств математического моделирования законов преобразования электрической энергии, различных видов модуляции;
- формирование навыков синтеза математических моделей, планирования и проведения численных экспериментов и анализа полученных результатов;
- приобретение опыта интерпретации результатов моделирования и соотнесение их с данными теоретических и экспериментальных исследований силовых преобразователей электрической энергии;
- получение опыта создания новых силовых преобразователей, систем их управления, с повышенными показателями энергоэффективности.

2. Место дисциплины в структуре ОПОП ВО

Дисциплина «Моделирование электронных устройств и систем» входит в часть, формируемую участниками образовательных отношений, дисциплин учебного плана.

Необходимыми условиями для освоения дисциплины являются:

знания физики и математики, основ измерительной техники, твердотельной электроники, приборов и устройств оптоэлектроники, основ теории сигналов и цепей;

умения использования персонального компьютера на уровне пользователя;

навыки работы с измерительными приборами (мультиметр, осциллограф), генераторами гармонических и периодических сигналов, генераторами когерентного излучения.

Содержание дисциплины является логическим продолжением содержания дисциплин: «САПР электронных устройств и систем», «Импульсно-модуляционные системы», «Проектирование и технология электронной компонентной базы», «Электромагнитная совместимость электронных устройств», «Силовые цепи электронных устройств».

Служит основой для изучения следующих дисциплин: приобретенные знания и умения используются при прохождении производственных практик, для выполнения и защиты ВКР.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины

T.C.	Индикаторы достижений	П.
Код и наименование	компетенции (по	Перечень планируемых
компетенции	реализуемой дисциплине)	результатов
ПК-5. Способен	ПК-5.1. Знает принципы	Знать: стандарты и требования
проектировать устройства,	подготовки технических	нормативно-технической
приборы и системы	заданий на современные	документации, необходимые при
электронной техники с	электронные устройства.	конструировании электронной
учетом заданных		техники;
требований	ПК-5.2. Умеет разрабатывать	методы и средства
	приборы и системы	автоматизированного
	электронной техники.	проектирования и
	W. 5.2. D	конструирования электронной
	ПК-5.3. Владеет навыками	аппаратуры как части общего
	разработки рабочей топологии	технологического цикла
	и плана технологии монтажа и	производства электронных и
	сборки электронной	микропроцессорных систем
	компонентной базы изделий	(МПС); принципы, методы и
	микро- и наноэлектроники	средства выполнения расчетов
		параметров печатного монтажа печатных плат
		печатных плат
		Уметь: разрабатывать
		технологическую
		документацию на
		проектируемые электронные
		приборы и устройства
		электронной
		аппаратуры;
		применять системы
		автоматизированного
		проектирования и
		конструирования электронной
		аппаратуры
		Владеть: навыками
		адаптации стандартных
		схемных решений к
		современной и
		перспективной элементной
		базе и алгоритмам
		функционирования;
		навыками организации
		проведения работ по
		подготовке производства
		электронной
		аппаратуры; средствами анализа и
		оценки проектов электронной
		аппаратуры на соответствие
		техническому заданию

ПК-8. Способен осуществлять авторское сопровождение разрабатываемых устройств, приборов и системы электронной техники на этапах проектирования и производства

ПК-8.1. Знает методы авторского сопровождения разрабатываемых изделий микроэлектроники.

ПК-8.2. Умеет анализировать причины брака выпускаемых изделий микроэлектроники.

ПК-8.3. Владеет навыками подготовки дефектных ведомостей устройств, приборов и систем электронной техники

Знать: инструкции по эксплуатации электронных приборов и микропроцессорных устройств
Уметь: осуществлять

эксплуатацию электронных приборов и микропроцессорных устройств; выполнять чертежи электрических схем аналоговой и цифровой электроники с использованием ЭВМ; применять технические регламенты и стандарты, утвержденные формы, действующие нормы, и правила при выполнении чертежей и текстовой технической документации Владеть: современными программными средствами подготовки конструкторскотехнологической документации в соответствии с нормативными документами; навыками организации обслуживания электронных приборов и

микропроцессорных устройств

4. Структура и содержание дисциплины

4.1. Объем учебной дисциплины и виды учебной работы

Dur vyrobyoù nobozy	Объем час	сов (зач. ед.)
Вид учебной работы	Очная форма	Заочная форма
Общая учебная нагрузка (всего)	144	144
	(4 зач. ед)	(4 зач. ед)
Обязательная аудиторная учебная нагрузка (всего) в	56	20
том числе:		
Лекции	28	8
Семинарские занятия	-	-
Практические занятия	28	12
Лабораторные работы	-	-
Курсовая работа (курсовой проект)	-	-
Другие формы и методы организации образовательного	-	-
процесса (расчетно-графические работы, групповые		
дискуссии, ролевые игры, тренинг, компьютерные		
симуляции, интерактивные лекции, семинары и т.п.)		
Самостоятельная работа студента (всего)	88	124
Форма аттестации	экзамен	экзамен

4.2. Содержание разделов дисциплины

Тема 1. Прикладные пакеты для моделирования полупроводниковых преобразователей энергии

Пакет Electronics Workbench (EWB). DesignLab 8.0. OrCAD 9.2 - 10. Micro-Cap. MATLAB+ Simulink

Тема 2. Библиотека Power Electronics пакета SimPowerSystems

Блок Diode. Блоки Thyristor, Detailed Thyristor. Блок IGBT. Блок IGBT/Diode. Блок MOSFET. Блок Ideal Switch. Блок Universal Bridge

Тема 3. Моделирование схем выпрямления переменного синусоидального напряжения

Неуправляемые выпрямители. Общие положения, основные принципы работы выпрямителей, сглаживающие фильтры. Моделирование трехфазного неуправляемого выпрямителя. Управляемые выпрямители. Основные положения, основные принципы работы управляемых выпрямителей. Моделирование однофазного управляемого выпрямителя

Тема 4. Моделирование инверторных схем

Общие принципы работы автономных инверторов. Моделирование однофазного резонансного инвертора. Моделирование трехфазного инвертора с широтно-импульсной модуляцией

Тема 5. Импульсные преобразователи постоянного тока

Общие положения, принципы работы импульсных преобразователей постоянного тока. Широтно-импульсные преобразователи напряжения (схема с последовательным ключевым элементом). Бустерная схема (схема с параллельным ключевым элементом) с инвертированием выходного напряжения. Импульсные однотактные обратноходовые преобразователи. Импульсные двухтактные преобразователи энергии. Моделирование импульсных преобразователей постоянного тока. Модели понижающих преобразователей постоянного напряжения (чоппера). Модель электропривода электромобиля с широтно-импульсным преобразователем напряжения. Модель стабилизатора постоянного тока для питания магнитных систем. Модель повышающего преобразователя постоянного напряжения (бустера)

4.3. Лекции

Nº		Объем часов	
п/п	Название темы	Очная форма	Заочная форма
1	Прикладные пакеты для моделирования полупроводниковых	4	1
	преобразователей энергии		
2	Библиотека Power Electronics пакета SimPowerSystems	4	1
3	3 Моделирование схем выпрямления переменного		2
	синусоидального напряжения		
4	Моделирование инверторных схем	6	2
5	5 Импульсные преобразователи постоянного тока		2
	Итого:	28	8

4.4. Практические занятия

Nº		Объем часов	
П/П	Название темы	Очная	Заочная
11/11			форма
1	Прикладные пакеты для моделирования полупроводниковых	4	2
	преобразователей энергии		
2	Библиотека Power Electronics пакета SimPowerSystems	4	2

3	Моделирование	схем	выпрямления	переменного	6	2
	синусоидального н	апряжения				
4	4 Моделирование инверторных схем				6	2
5	5 Импульсные преобразователи постоянного тока				8	4
		Ито	го:		28	12

4.5. Лабораторные работы

Лабораторные работы не предусмотрены учебным планом

4.6. Самостоятельная работа студентов

No	т.б. Самостоятсявная расота студе		Объе	м часов
№ п/п	Название темы	Вид СРС	Очная форма	Заочная форма
1	Прикладные пакеты для моделирования полупроводниковых преобразователей энергии	Подготовка к практическим занятиям	8	16
2	Библиотека Power Electronics пакета SimPowerSystems	Подготовка к практическим занятиям	8	16
3	Моделирование схем выпрямления переменного синусоидального напряжения	Подготовка к практическим занятиям	16	20
4	1 1	Подготовка к практическим занятиям	16	20
5		Подготовка к практическим занятиям	16	24
6	Экзамен по дисциплине	Подготовка к семестровому экзамену	24	28
	Итого:		88	124

4.7. Курсовые работы/проекты по дисциплине

Курсовые работы/проекты не предусмотрены учебным планом

5. Образовательные технологии

Преподавание дисциплины ведется с применением следующих видов образовательных технологий:

- традиционные объяснительно-иллюстративные технологии, которые обеспечивают доступность учебного материала для большинства студентов, системность, отработанность организационных форм и привычных методов, относительно малые затраты времени;
- технологии проблемного обучения, направленные на развитие познавательной активности, творческой самостоятельности студентов и предполагающие последовательное и целенаправленное выдвижение перед студентом познавательных задач, разрешение которых позволяет студентам активно усваивать знания (используются поисковые методы; постановка познавательных задач);
- технологии развивающего обучения, позволяющие ориентировать учебный процесс на потенциальные возможности студентов, их реализацию и развитие;
- технологии концентрированного обучения, суть которых состоит в создании максимально близкой к естественным психологическим особенностям человеческого восприятия структуры учебного процесса и которые дают возможность глубокого и системного

изучения содержания учебных дисциплин за счет объединения занятий в тематические блоки;

- технологии модульного обучения, дающие возможность обеспечения гибкости процесса обучения, адаптации его к индивидуальным потребностям и особенностям обучающихся (применяются, как правило, при самостоятельном обучении студентов по индивидуальному учебному плану);
- технологии дифференцированного обучения, обеспечивающие возможность создания оптимальных условий для развития интересов и способностей студентов, в том числе и студентов с особыми образовательными потребностями, что позволяет реализовать в культурно-образовательном пространстве университета идею создания равных возможностей для получения образования;
- технологии активного (контекстного) обучения, с помощью которых осуществляется моделирование предметного, проблемного и социального содержания будущей профессиональной деятельности студентов (используются активные и интерактивные методы обучения) и т.д.

Максимальная эффективность педагогического процесса достигается путем конструирования оптимального комплекса педагогических технологий и (или) их элементов на личностно-ориентированной, деятельностной, диалогической основе и использования необходимых современных средств обучения.

Формы контроля освоения дисциплины

Текущая аттестация студентов производится в дискретные временные интервалы лектором и преподавателем(ями), ведущими лабораторные работы и практические занятия по дисциплине в следующих формах:

- контрольные вопросы к практическим занятиям;
- вопросы к лабораторным работам;
- тесты;
- вопросы к экзамену.

Фонды оценочных средств, включающие контрольные вопросы, вопросы коллоквиумов, тесты и методы контроля, позволяющие оценить результаты текущей и промежуточной аттестации обучающихся по данной дисциплине, помещаются в приложении к рабочей программе в соответствии с «Положением о фонде оценочных средств».

Промежуточная аттестация по результатам освоения дисциплины проходит в форме устного экзамена (включает в себя ответ на теоретические вопросы). Студенты, выполнившие 75% текущих и контрольных мероприятий на «отлично», а остальные 25 % на «хорошо», имеют право на получение итоговой отличной оценки.

В экзаменационную ведомость и зачетную книжку выставляются оценки по национальной шкале, приведенной в таблице.

Характеристика знания предмета и ответов	Экзамены
Обучающийся глубоко и в полном объёме владеет программным	отлично
материалом. Грамотно, исчерпывающе и логично его излагает в	(5)
устной или письменной форме. При этом знает рекомендованную	
литературу, проявляет творческий подход в ответах на вопросы и	
правильно обосновывает принятые решения, хорошо владеет	
умениями и навыками при выполнении практических задач	
Обучающийся знает программный материал, грамотно и по сути	хорошо
излагает его в устной или письменной форме, допуская	(4)
незначительные неточности в утверждениях, трактовках,	
определениях и категориях или незначительное количество ошибок.	
При этом владеет необходимыми умениями и навыками	
при выполнении практических задач	

Обучающийся знает только основной программный материал,	удовлетворительно
допускает неточности, недостаточно чёткие формулировки,	(3)
непоследовательность в ответах, излагаемых в устной или письменной	
форме. При этом недостаточно владеет умениями и навыками при	
выполнении практических задач. Допускает до 30 %	
ошибок в излагаемых ответах	
1 = =	
Обучающийся не знает значительной части программного материала.	неудовлетворительно
Обучающийся не знает значительной части программного материала. При этом допускает принципиальные ошибки в доказательствах, в	J
	(2)
При этом допускает принципиальные ошибки в доказательствах, в	(2)
При этом допускает принципиальные ошибки в доказательствах, в трактовке понятий и категорий, проявляет низкую культуру знаний,	(2)

6. Учебно-методическое и программно-информационное обеспечение дисциплины

- а) Основная литература:
- 1. Королев, А.Л. Компьютерное моделирование объектов, процессов и систем: учебное пособие / А.Л. Королев, Н.Б. Паршукова. Челябинск: Издво Южно-Урал. гос. гуманитар.-пед. ун-та, 2020. 329 с. URL: https://djvu.online/file/XWDNtz4DahziX (дата обращения: 30.08.2024).
- 2. Шафрай А. В., Бородулин Д. М., Бакин И. А., Комаров С. С. Математическое моделирование процессов и технологических систем [Электронный ресурс]:учебное пособие. Кемерово: КемГУ, 2020. 119 с. Режим доступа: https://e.lanbook.com/book/162603
- 3. Монаков А. А. Математическое моделирование радиотехнических систем [Электронный ресурс]:. Санкт-Петербург: Лань, 2021. 148 с. Режим доступа: https://e.lanbook.com/book/168953

б) Дополнительная литература:

- 1. Ибрагимов, Н.Х. Практический курс дифференциальных уравнений и математического моделирования. Классические и новые методы. Нелинейные математические методы. Симметрия и принципы инвариантности / Перевод с англ. И.С. Емельяновой. Нижний Новгород: Издательство Нижегородсткого госуниверситета, 2007. 421 с. URL: https://djvu.online/file/yg7CPPLGvDqTW (дата обращения: 30.08.2024).
- 2. Тарасик, В.П. Математическое моделирование технических систем: Учебник для вузов. Мн.: ДизайнПРО, 2004. 640 с. URL: https://djvu.online/file/v8X4ui3aayQmz (дата обращения: 30.08.2024).
- 3. Андриевский, Б.Р. Элементы математического моделирования в программных средах MATLAB 5 и Scilab / Б.Р. Андриевский, А.Л. Фрадков. СПб.: Наука, 2001. 286 с. URL: https://djvu.online/file/bVyoMabNRRTUq (дата обращения: 30.08.2024).
- 4. Смит, Джон М. Математическое и цифровое моделирование для инженеров и исследователей / Пер. с англ. Н.П. Ильиной; Под ред. О.А. Чембровского. М.: Машиностроение, 1980. 271 с. URL: https://djvu.online/file/28zFaaHF5yfRz (дата обращения: 30.08.2024).
- 5. Асанов А. 3. Введение в математическое моделирование систем управления [Электронный ресурс]:учебное пособие. М.: РТУ МИРЭА, 2019. Режим доступа: http://library.mirea.ru/secret/26112019/2228.iso

в) Интернет-ресурсы:

- 1. Министерство образования и науки Российской Федерации http://минобрнауки.pd
- 2. Министерства природных ресурсов и экологии Российской Федерации http://www.mnr.gov.ru

- 3. Федеральная служба по надзору в сфере образования и науки http://obrnadzor.gov.ru
- 4. Министерство образования и науки Луганской Народной Республики https://minobr.su
- 5. Министерство природных ресурсов и экологической безопасности ЛНР https://www.mprlnr.su
 - 6. Народный совет Луганской Народной Республики https://nslnr.su
- 7. Портал Федеральных государственных образовательных стандартов высшего образования http://fgosvo.ru
 - 8. Федеральный портал «Российское образование» http://www.edu.ru
- 9. Информационная система «Единое окно доступа к образовательным ресурсам» http://window.edu.ru
 - 10. Федеральный центр информационно-образовательных ресурсов http://fcior.edu.ru

Электронные библиотечные системы и ресурсы:

- 1. Электронно-библиотечная система «Консультант студента» http://www.studentlibrary.ru/cgi-bin/mb4x
 - 2. Электронно-библиотечная система «StudMed.ru» https://www.studmed.ru
 - 3. Научная электронная библиотека eLIBRARI.RU» http://elibrary.ru
 - 4. ЭБС Издательства «ЛАНЬ» https://e.lanbook.com

Информационный ресурс библиотеки образовательной организации

1. Научная библиотека имени А. Н. Коняева – http://biblio.dahluniver.ru

7. Материально-техническое обеспечение дисциплины

Лекционные занятия проводятся с использованием комплекта электронных презентаций в аудитории, оснащенной презентационной техникой (проектор, экран, ноутбук).

Практические работы проводятся с использованием пакета специализированных компьютерных программ.

Рабочие места преподавателя и студентов в учебной лаборатории оснащены компьютерами с доступом в Интернет, предназначенными для работы в указанных специализированных компьютерных программах и средах.

Программное обеспечение:

Функциональное назначение	Бесплатное программное обеспечение	Ссылки
Офисный пакет	Libre Office 6.3.1	https://www.libreoffice.org/ https://ru.wikipedia.org/wiki/LibreOffice
Операционная система	UBUNTU 19.04	https://ubuntu.com/ https://ru.wikipedia.org/wiki/Ubuntu
Браузер	Firefox Mozilla	http://www.mozilla.org/ru/firefox/fx
Браузер	Opera	http://www.opera.com
Почтовый клиент	Mozilla Thunderbird	http://www.mozilla.org/ru/thunderbird
Файл-менеджер	Far Manager	http://www.farmanager.com/download.php

Архиватор	7Zip	http://www.7-zip.org/
Графический редактор	Manipulation Program)	http://www.gimp.org/ http://gimp.ru/viewpage.php?page_id=8 http://ru.wikipedia.org/wiki/GIMP
Редактор PDF	PDFCreator	http://www.pdfforge.org/pdfcreator
Аудиоплеер	VLC	http://www.videolan.org/vlc/

8. Фонд оценочных средств для проведения текущего контроля и промежуточной аттестации по дисциплине

Паспорт фонда оценочных средств по учебной дисциплине «Моделирование электронных устройств и систем»

	Перечень компетенций, формируемых в результате освоения учебной дисциплины				
№ п/п	Код контроли- руемой компетенции	Формулировка контролируемой компетенции	Индикаторы достижений компетенции(по реализуемой дисциплине)	Контролируемые темы учебной дисциплины, практики	Этапы формирова- ния (семестр изучения)
1		Способен проектировать устройства, приборы и системы электронной	ПК-5.1. ПК-5.2. ПК-5.3.	Тема 1. Прикладные пакеты для моделирования полупроводниковых преобразователей энергии	3
		техники с учетом заданных требований и		Тема 2. Библиотека Power Electronics пакета SimPowerSystems	3
		устройства систем связи		Тема 3. Моделирование схем выпрямления переменного синусоидального напряжения	3
				Тема 4. Моделирование инверторных схем	3
				Тема 5. Импульсные преобразователи постоянного тока	3
2.		Способен осуществлять авторское сопровождение разрабатываемых устройств,	ПК-8.1. ПК-8.2. ПК-8.3.	Тема 1. Прикладные пакеты для моделирования полупроводниковых преобразователей энергии	3
		приборов и системы электронной техники на этапах проектирования и производства		Тема 2. Библиотека Power Electronics пакета SimPowerSystems Тема 3. Моделирование схем выпрямления переменного синусоидального напряжения Тема 4. Моделирование инверторных схем	3
				Тема 5. Импульсные преобразователи постоянного тока	3

Показатели и критерии оценивания компетенций, описание шкал оценивания

№ п/п	Код контроли- руемой компетенции	Индикаторы достижений компетенции (по реализуемой дисциплине)	Перечень планируемых результатов	Контролируемые темы учебной дисциплины	Наименование оценочного средства
1.	ПК-5	ПК-5.1.	Знать: стандарты и	Тема 1,	Контрольные
		ПК-5.2.	гребования нормативно-	Тема 2,	вопросы к
		ПК-5.3.	технической	Тема 3,	практическим
			документации,	Тема 4,	занятиям, тесты,
			необходимые при	Тема 5	вопросы к
			конструировании		экзамену
			электронной техники;		
			методы и средства		
			автоматизированного		
			проектирования и		
			конструирования		
			электронной аппаратуры		
			как части общего		
			технологического цикла		
			производства МПС;		
			принципы, методы и		
			средства выполнения		
			расчетов параметров		
			печатного монтажа		
			печатных плат.		
			Уметь: разрабатывать		
			технологическую		
			документацию на		
			проектируемые электронные		
			приборы и устройства		
			приооры и устроиства электронной		
			аппаратуры;		
			применять системы		
			автоматизированного		
			проектирования и		
			конструирования		
			электронной аппаратуры.		
			Владеть: навыками		
			адаптации стандартных		
			схемных решений к		
			современной и		
			перспективной		
			элементной		
			базе и алгоритмам		
			функционирования;		
			навыками организации		
			проведения работ по		
			подготовке производства		

			U		
			электронной		
			аппаратуры; средствами		
			анализа и оценки		
			проектов электронной		
			аппаратуры на		
			соответствие		
			техническому заданию		
2.	ПК-8	ПК-8.1.	Знать: инструкции по	Тема 1,	Контрольные
		ПК-8.2.	эксплуатации	Тема 2,	вопросы к
		ПК-8.3.	электронных приборов и	Тема 3,	практическим
			микропроцессорных	Тема 4,	занятиям, тесты,
			устройств.	Тема 5	вопросы к
			Уметь: осуществлять		экзамену
			эксплуатацию		
			электронных приборов и		
			микропроцессорных		
			устройств; выполнять		
			чертежи электрических		
			схем аналоговой и		
			цифровой электроники с		
			использованием ЭВМ;		
			применять технические		
			регламенты и стандарты,		
			утвержденные формы,		
			действующие нормы, и		
			правила при выполнении		
			чертежей и текстовой		
			технической		
			документации.		
			Владеть: современными		
			программными		
			средствами подготовки		
			конструкторско-		
			технологической		
			документации в		
			соответствии с		
			нормативными		
			документами; навыками		
			организации		
			обслуживания		
			электронных приборов и		
			микропроцессорных устройств		
			устроиств		<u> </u>

8.1. Контрольные вопросы к практическим занятиям

- 1. Что такое модель?
- 2. Зачем необходимо применять моделирование?
- 3. Перечислите возможные цели построения модели.
- 4. Какова классификация моделей по типу носителя информации об оригинале?
- 5. Что следует понимать под процессом формализации в моделировании?

- 6. Каковы основные принципы построения моделей?
- 7. Перечислите возможные стадии моделирования.
- 8. Что понимается под термином «Реальная ситуация» при синтезе модели?
- 9. Что понимается под термином «Постановка задачи» при синтезе модели?
- 10. Как проверяется адекватность модели?
- 11. Как проверяется согласованность модели?
- 12. Перечислите виды математических моделей.
- 13. Чем отличаются детерминированные модели от стохастических?
- 14. В каких случаях применяют статистическое моделирование (метод Монте-Карло)?
- 15. Чем отличаются дискретные модели от непрерывных?
- 16. Чем отличаются аналитические модели от имитационных?
- 17. Каковы этапы технологии компьютерного моделирования?
- 18. Перечислить основные характеристики радиоволн, которые фиксируют и соответственно обрабатывают при дистанционном зондировании.
- 19. Перечислить основные физические процессы, вызывающие изменение характеристик радиоволн.
- 20. Какие основные физические параметры исследуемой среды влияют на процесс взаимодействия с электромагнитными волнами?
 - 21. Перечислить основные приборы, применяемые при дистанционном зондировании.
 - 22. Какие принципы и методы используются для получения информации о цели?
 - 23. Изложите принцип работы импульсной РЛС кругового обзора.
- 24. В чём состоит общность и различие когерентной и некогерентной РЛС кругового обзора?
 - 25. Изложите принцип работы моноимпульсной РЛС.
 - 26. Какие типы пеленгаторов используют в моноимпульсных РЛС, различие их свойств?
 - 27. Изложите принцип работы радиолокатора ближнего действия с ЛЧМ.
 - 28. Перечислите области применения радиолокатора ближнего действия с ЛЧМ.
 - 29. Изложите принцип работы доплеровской РЛС ближнего действия.
 - 30. Фазовый метод обработки принятых отраженных сигналов ДРЛС, зачем он нужен?
 - 31. Какое принципиальное отличие радиотеплолокации от активной локации?
 - 32. Каким законом описывается интенсивность излучения АЧТ?
 - 33. Каким приближением в СВЧ диапазоне обычно пользуются для описания излучения?
 - 34. Поясните, что такое радиояркостная температура?
 - 35. На каком расстоянии располагается дальнее поле, или зона Фраунгофера?
 - 36. Чем обусловлена величина полного волнового сопротивления вблизи антенны?
 - 37. Изложите принцип работы простейшего СВЧ радиометра.
 - 38. Какая формула определяет потенциальную чувствительность радиометра?
 - 39. Изложите принцип работы компенсационного СВЧ радиометра.
 - 40. Изложите принцип работы модуляционного радиометра Дайка.
 - 41. Изложите принцип работы СВЧ радиометра нулевого баланса.
 - 42. Дать сравнение дистанционной методики измерения с аппликационной.
 - 43. Что такое интегральная температура биоткани?
 - 44. Назовите основные возможные ошибки измерения интегральной температуры?
 - 45. Назовите способы уменьшения ошибок измерения интегральной температуры?
 - 46. Изложите принцип работы медицинского диагностического радиотермометра.
 - 47. Что представляют из себя математические модели сигналов?
 - 48. Какова классификация сигналов?
 - 49. Что такое аналитический сигнал?
 - 50. Зачем используют комплексное представление вещественных сигналов?
- 51. Какие преобразования позволяют представить аналитический сигнал в частотной области?
 - 52. С какой целью используют оконную обработку сигнала при преобразовании Фурье?

- 53. В чем заключается физический смысл преобразования Гильберта?
- 54. Что такое мгновенная частота, амплитуда и фаза негармонического сигнала?
- 55. В чем заключается физический смысл преобразования Лапласа аналогово сигнала?
- 56. В чём состоит общность и различие свойств преобразований Фурье и Лапласа и области их применения?
 - 57. Что такое передаточная функция аналогового фильтра? Построение АЧХ, ФЧХ звена.
 - 58. Что такое импульсная характеристика аналогового звена?
 - 59. Как связаны импульсная характеристика и передаточная функция аналогово звена?
 - 60. В чем заключается физический смысл преобразования Лапласа дискретного сигнала?
 - 61. Что такое передаточная функция цифрового фильтра?
 - 62. Какими уравнениями могут быть описаны аналоговые фильтры, а какими цифровые?
 - 63. Что такое импульсная характеристика цифрового звена?
 - 64. В чем различия КИХ и БИХ- фильтров?
 - 65. Что такое точечные оценки результатов моделирования?
 - 66. Что такое случайная погрешность измерения или результата моделирования?
- 67. Как строиться гистограмма распределения результатов статистического моделирования?
 - 68. Что принимается за результат измерения (моделирования)?
 - 69. Что такое дисперсия и среднее квадратичное отклонение результатов измерения?
 - 70. Проверка статистических гипотез по критерию Пирсона.
- 71. Как определяется доверительный интервал полученных величин при заданной доверительной вероятности?
 - 72. В какой форме следует представлять запись результатов моделирования?
 - 73. Как выглядит блочная модель системы передачи сигналов?
 - 74. Каковы основные принципы помехоустойчивого кодирования информации?
 - 75. Как работают линейные блочные коды?
 - 76. Как работают коды с проверкой на чётность?
 - 77. Какой принцип заложен в кодах Хеминга с исправлением ошибок?
 - 78. Как работают свёрточные коды?
 - 79. Какой принцип заложен в рекуррентном коде Финка?

Критерии и шкала оценивания по оценочному средству контрольные вопросы к практическим занятиям

Шкала оценивания (интервал баллов)	Критерий оценивания	
5	Ответ представлен на высоком уровне (студент в полном объеме	
	осветил рассматриваемый вопрос, привел аргументы в пользу	
	своих суждений, владеет соответствующей научной	
	терминологией)	
4	Ответ представлен на среднем уровне (студент в целом осветил	
	рассматриваемый вопрос, привел аргументы в пользу своих	
	суждений, допустив некоторые неточности)	
3	Ответ представлен на низком уровне (студент допустил	
	существенные неточности, изложил материал с ошибками, не	
	владеет в достаточной степени соответствующей научной	
	терминологией)	
2	Ответ представлен на неудовлетворительном уровне или не	
	представлен (студент не готов отвечать)	

8.2. Тесты:

- 1. Что такое математическая модель?
- а) точное представление реальных объектов, процессов или систем, выраженное в физических терминах и сохраняющее существенные черты оригинала;
- б) приближенное представление реальных объектов, процессов или систем, выраженное в физических терминах и сохраняющее существенные черты оригинала;
- в) приближенное представление реальных объектов, процессов или систем, выраженное в математических терминах и сохраняющее существенные черты оригинала;
- г) точное представление реальных объектов, процессов или систем, выраженное в математических терминах и сохраняющее существенные черты оригинала.
 - 2. Какой из способов аппроксимации данных нашел большее применение на практике?
 - а) нет правильного ответа;
- б) способ, который требует, чтобы аппроксимирующая кривая F(x), аналитический вид которой необходимо найти, не проходила ни через одну узловую точку таблицы;
- в) способ, который требует, чтобы аппроксимирующая кривая F(x), аналитический вид которой необходимо найти, проходила через все узловые точки таблицы;
 - г) способ, заключающийся в сглаживании опытных данных.
- 3. Как добиться того чтобы результаты по методу Эйлера, модифицированному методу Эйлера и методу Рунге-Кутта 4-го порядка были почти одинаковыми
 - а) уменьшая шаг интегрирования;
 - б) увеличивая шаг интегрирования;
 - в) удваивая шаг интегрирования.
 - 4. Интерполяция это
 - а) нахождение значения таблично заданной функции внутри заданного интервала;
- б) восстановление функции в точках за пределами заданного интервала табличной функции;
 - в) усреднение или сглаживание табличной функции.
 - 5. Какая величина называется непрерывной?
- а) случайную величину, которая может принимать только одно значение из некоторого конечного или бесконечного промежутка;
- б) случайная величина, которая может принимать только одно значение из некоторого конечного и все значения бесконечного промежутка;
- в) случайную величину, которая может принимать все значения из некоторого конечного или бесконечного промежутка.
- 6. Каким количеством нелинейных уравнений описывается модель, если законы функционирования модели нелинейны, а моделируемые процесс или система обладают одной степенью свободы?
 - а) тремя нелинейными уравнениями;
 - б) двумя нелинейными уравнениями;
 - в) одним нелинейным уравнением.
- 7. Пересечение касательной к функции и осью абсцисс дает точку, используемую в методе
 - а) во всех указанных методах;
 - б) простых итераций;
 - в) половинного деления;
 - г) Ньютона.
- 8. В каком случае квадратурная формула называется формулой прямоугольников, а метод методом прямоугольников?
- а) если в каждой из частей деления интервала [a,b] подынтегральная функция аппроксимируется многочленом второй степени;
- б) если в каждой из частей деления интервала [a,b] подынтегральная функция аппроксимируется многочленом нулевой степени, т.е. прямой, параллельной оси ОХ;

- в) если в каждой из частей деления интервала [a,b] подынтегральная функция аппроксимируется многочленом первой степени, т.е. прямой, соединяющей две соседние узловые точки.
 - 9. Для изучения каких систем используется аналитическое моделирование?
 - а) сравнительно простых;
 - б) любых;
 - в) сложных.
- 10. В каком случае квадратурная формула называется формулой Симпсона, а метод методом Симпсона?
- а) если в каждой из частей деления интервала [a,b] подынтегральная функция аппроксимируется многочленом второй степени;
- б) если в каждой из частей деления интервала [a,b] подынтегральная функция аппроксимируется многочленом нулевой степени, т.е. прямой, параллельной оси ОХ;
- в) если в каждой из частей деления интервала [a,b] подынтегральная функция аппроксимируется многочленом первой степени, т.е. прямой, соединяющей две соседние узловые точки.
 - 11. Какая функция равномерного распределения существует?
 - а) дифференциальная и интегральная функции;
 - б) только интегральная функция;
 - в) только дифференциальная функция.
- 12. Что требуется для нахождения объективных и устойчивых характеристик процесса при статистическом моделировании?
 - а) одинарное воспроизведение процесса;
- б) многократное воспроизведение процесса, с последующей статической обработкой полученных данных;
- в) многократное воспроизведение процесса, с последующей статистической обработкой полученных данных.
- 13. Чем аппроксимируется искомая функция у(х) на каждом шаге интегрирования дифференциальных уравнений в методе Рунге-Кутта 4-го порядка?
 - а) рядом Тейлора, содержащим члены ряда с h4;
 - б) рядом Тейлора, содержащим члены ряда с h2;
 - в) рядом Тейлора, содержащим члены ряда с h3.
 - 14. В градиентных методах 2-го порядка используются
 - а) наряду с первыми и значения вторых производных функции;
 - б) только значения целевой функции;
 - в) значения первых производных функции.
 - 15. Численные методы это методы, основанные:
 - а) на теоремах, устанавливающих свойства решаемых задач;
 - б) на сведении решения задач к элементарным арифметическим действиям над числами;
 - в) на представлении решения задач в виде формул;
 - г) на графических построениях.
- 16. Какой из шагов не входит в состав исследования объекта, процесса или системы и составления их математического описания при математическом моделировании, но является частью математического моделирования?
 - а) выделение наиболее существенных черт и свойств реального объекта или процесса;
- б) определение внешних связей и описание их с помощью ограничений, уравнений, равенств, неравенств, логико-математических конструкций;
 - в) построение алгоритма, моделирующего поведение объекта, процесса или системы;
- г) определение переменных, т.е. параметров, значения которых влияют на основные черты и свойства объекта.
 - 17. В сколько этапов реализуется метод Ньютона?
 - а) один;

- б) три;
- в) два;
- г) зависит от количества уравнений.
- 18. Из какого количества этапов состоит метод Гаусса?
- a) 2;
- б) 5;
- в) 3;
- г) 4.
- 19. Какая модель не является плодом человеческой мысли в общем случае?
- а) математическая;
- б) физическая;
- в) знаковая;
- г) наглядная;
- д) натурная.
- 20. К чему преобразуется исходная система n-го порядка в результате выполнения первого шага прямого хода метода Гаусса?
 - а) к совокупности уравнения;
- б) к совокупности уравнения и системы линейных уравнений, порядок которой равен n-1;
 - в) к системе линейных уравнений, порядок которой равен n-1.
- 21. К какому способу формирования последовательности нормально распределенных случайных величин относится метод, основанный на центральной предельной теореме?
 - а) отсеивание псевдослучайных чисел из первоначальной последовательности;
- б) моделирование условий, соответствующих центральной предельной теореме теории вероятности;
 - в) прямое преобразование псевдослучайного числа;
 - г) обратное преобразование псевдослучайного числа.
 - 22. Интерполяция это
 - а) нахождение значения таблично заданной функции внутри заданного интервала;
- б) восстановление функции в точках за пределами заданного интервала табличной функции;
 - в) усреднение или сглаживание табличной функции.
 - 23. Какая величина называется непрерывной?
- а) случайную величину, которая может принимать только одно значение из некоторого конечного или бесконечного промежутка;
- б) случайная величина, которая может принимать только одно значение из некоторого конечного и все значения бесконечного промежутка;
- в) случайную величину, которая может принимать все значения из некоторого конечного или бесконечного промежутка.
- 24. Неустранимая погрешность вычислительного эксперимента это погрешность, связанная:
 - а) с ошибками округления чисел в ЭВМ;
 - б) с ошибками дискретизации;
 - в) с погрешностями математической модели;
 - г) с погрешностями численного метода.
- 25. Каким количеством нелинейных уравнений описывается модель, если законы функционирования модели нелинейны, а моделируемые процесс или система обладают одной степенью свободы?
 - а) тремя нелинейными уравнениями;
 - б) двумя нелинейными уравнениями;
 - в) одним нелинейным уравнением.
 - 26. В чем заключается сглаживание опытных данных методом наименьших квадратов?

- а) при сглаживании опытных данных аппроксимирующей кривую F(x)стремятся провести так, чтобы ее отклонения от табличных данных (уклонения) по всем узловым точкам были максимальными;
- б) при сглаживании опытных данных аппроксимирующей кривую F(x) стремятся провести так, чтобы ее отклонения от табличных данных (уклонения) по всем узловым точкам были минимальными;
- в) при сглаживании опытных данных аппроксимирующей кривую F(x)стремятся провести так, чтобы ее отклонения от табличных данных (уклонения) по большинству узловых точек были максимальными;
- г) при сглаживании опытных данных аппроксимирующей кривую F(x)стремятся провести так, чтобы ее отклонения от табличных данных (уклонения) по большинству узловых точек были минимальными;
 - 27. К каким методам относятся численные методы по характеру результата?
 - а) нет правильного ответа;
 - б) приближенным;
 - в) точным.
 - 28. Как еще называется метод Эйлера?
 - а) метод Рунге-Кутта второго порядка;
 - б) метод Рунге-Кутта первого порядка;
 - в) метод Рунге-Кутта четвертого порядка.
- 29. Как называются модели, в которых предполагается отсутствие всяких случайных воздействий и их элементы (элементы модели) достаточно точно установлены?
 - а) статические;
 - б) детерминированные;
 - в) дискретные;
 - г) динамические.
 - 30. В чем заключается построение математической модели?
- а) в определении связей между теми или иными процессами и явлениями, создании математического аппарата, позволяющего выразить количественно связь между теми или иными процессами и явлениями, между интересующими специалиста физическими величинами, и факторами, влияющими на конечный результат;
- б) в определении связей между теми или иными процессами и явлениями, создании математического аппарата, позволяющего выразить количественно и качественно связь между теми или иными процессами и явлениями, между интересующими специалиста физическими величинами, и факторами, влияющими на конечный результат;
- в) в определении связей между теми или иными процессами и явлениями, создании математического аппарата, позволяющего выразить количественно связь между теми или иными процессами и явлениями, между интересующими специалиста математическими величинами, и факторами, влияющими на конечный результат;
- г) в определении связей между теми или иными процессами и явлениями, создании математического аппарата, позволяющего выразить количественно и качественно связь между теми или иными процессами и явлениями, между интересующими специалиста математическими величинами, и факторами, влияющими на конечный результат.

Критерии и шкала оценивания по оценочному средству тесты

Шкала оценивания (интервал баллов)	Критерий оценивания	
5	Тесты выполнены на высоком уровне (правильные ответы даны	
	на 90-100% тестов)	
4	Тесты выполнены на среднем уровне (правильные ответы даны на	
	75-89% тестов)	

3	Тесты выполнены на низком уровне (правильные ответы даны на 50-74% тестов)	
2	Тесты выполнены на неудовлетворительном уровне (правильные ответы даны менее чем на 50% тестов)	

8.3. Индивидуальное задание (рефераты, презентации)

Темы рефератов (презентаций)

- 1. Программа для моделирования электромагнитных и тепловых задач Femm.
- 2. Программа для моделирования электромагнитных и тепловых задач Ansys multiphysics.
- 3. Программа для моделирования электромагнитных и тепловых задач MagNet и ThermNet 2D/3D.
 - 4. Программа для моделирования электромагнитных и тепловых задач Jmag Designe.
 - 5. Программа для моделирования электромагнитных и тепловых задач Elcut.
 - 6. Программа для моделирования электромагнитных и тепловых задач Cedrat flux 2D/3D.
- 7. Программа для моделирования электромагнитных и тепловых задач Comsol multiphysics.

Индивидуальные задания

Индивидуальное задание.

- 1. Разработайте математическую модель системы управления с широтно-импульсной модуляцией для мостового двухполупериодного управляемого выпрямителя.
- 2. Проанализируйте влияние управляющего сигнала $u^*(t) = \text{const}$ на величину и форму выходного напряжения выпрямителя.
- 3. Проанализируйте влияние управляющего сигнала $u^*(t) = Um \sin(t)$ на величину и форму выходного напряжения выпрямителя.
- 4. По результатам исследований и заданию преподавателя постройте зависимости (числа пульсаций импульсов, скважность импульсов).

Критерии и шкала оценивания по оценочному средству «Индивидуальное задание (рефераты, презентации)»

Шкала оценивания	Характеристика знания предмета и ответов		
	Обучающийся полностью и правильно выполнил задание. Показал		
5 (отлично)	отличные знания, умения и владения навыками, применения их при		
	решении задач в рамках усвоенного учебного материала.		
	Обучающийся выполнил задание с небольшими неточностями.		
4 (хорошо)	Показал хорошие знания, умения и владения навыками, применения		
	их при решении задач в рамках освоенного учебного материала.		
	Обучающийся выполнил задание с существенными неточностями.		
3 (удовлетворительно)	Показал удовлетворительные знания, умения и владения навыками,		
	применения их при решении задач.		
	Обучающийся выполнил задание неправильно. При выполнении		
2 (неудовлетворительно)	обучающийся продемонстрировал недостаточный уровень знаний,		
2 (неудовлетворительно)	умений и владения ими при решении задач в рамках усвоенного		
	учебного материала.		

8.4. Оценочные средства для промежуточной аттестации (экзамен)

- 1. Что такое содержательная и концептуальная модели? Дайте определение математического моделирования.
- 2. Приведите классификацию математических моделей в зависимости от сложности объекта.
- 3. Приведите классификацию математических моделей в зависимости от оператора модели.
- 4. Приведите классификацию математических моделей в зависимости от параметров модели.
- 5. Приведите классификацию математических моделей в зависимости от целей моделирования.
- 6. Приведите классификацию математических моделей в зависимости от методов реализации.
- 7. Какие основные этапы процесса схемотехнического моделирования используются при проектировании электронных устройств?
- 8. Какие две группы параметров используют при схемотехническом моделировании? Дайте их краткую характеристику.
 - 9. Какие виды расчета и анализа схем используют при моделировании?
 - 10. В чем состоит параметрическая оптимизация и структурный синтез схем?
- 11. Как проводится обследование объекта моделирования и формулировка технического задания на разработку модели?
- 12. Концептуальная и математическая постановка задачи при проведении математического моделирования.
- 13. Как проводится качественный анализ и проверка корректности модели при проведении математического моделирования?
- 14. Как проводится выбор и обоснование методов решения задач при проведении математического моделирования?
- 15. Как проводится проверка адекватности модели при проведении математического моделирования?
- 16. Какие возможности предоставляет и какие основные этапы процесса математического моделирования неуправляемых однофазных и трехфазных выпрямителей?
- 17. Какие возможности предоставляет и какие основные этапы процесса математического моделирования управляемых однофазных и трехфазных выпрямителей?
- 18. Какие возможности предоставляет и какие основные этапы процесса математического моделирования регуляторов переменного напряжения?
- 19. Какие возможности предоставляет и какие основные этапы процесса математического моделирования автономных инверторов?
- 20. Какие возможности предоставляет и какие основные этапы процесса математического моделирования систем стабилизации выходного напряжения инверторов тока?
- 21. Какие возможности предоставляет и какие основные этапы процесса математического моделирования однофазных и инверторов напряжения?
- 22. Какие возможности предоставляет и какие основные этапы процесса математического моделирования трехфазных инверторов напряжения?
- 23. Какие возможности предоставляет и какие основные этапы процесса математического моделирования процессов частотного регулирования асинхронным электроприводом?
- 24. Каковы возможности компьютерного моделирования элементов и устройств с использованием стандартных пакетов программ моделирования?
- 25. Каковы возможности компьютерного моделирования систем силовой электроники с использованием стандартных пакетов программ моделирования?

Критерии и шкала оценивания по оценочному средству промежуточный контроль (экзамен)

Шкала оценивания (интервал баллов)	Критерий оценивания		
отлично	Студент глубоко и в полном объёме владеет программным		
(5)	материалом. Грамотно, исчерпывающе и логично его излагает в		
	устной или письменной форме. При этом знает рекомендованную		
	литературу, проявляет творческий подход в ответах на вопросы и		
	правильно обосновывает принятые решения, хорошо владеет		
	умениями и навыками при		
	выполнении практических задач.		
хорошо	Студент знает программный материал, грамотно и по сути		
(4)	излагает его в устной или письменной форме, допуская		
	незначительные неточности в утверждениях, трактовках,		
	определениях и категориях или незначительное количество		
	ошибок. При этом владеет необходимыми умениями и навыками		
	при выполнении практических задач.		
удовлетворительно	Студент знает только основной программный материал,		
(3)	допускает неточности, недостаточно чёткие формулировки,		
	непоследовательность в ответах, излагаемых в устной или		
	письменной форме. При этом недостаточно владеет		
	умениями и навыками при выполнении практических задач.		
	Допускает до 30% ошибок в излагаемых ответах.		
неудовлетворительно	Студент не знает значительной части программного материала.		
(2)	При этом допускает принципиальные ошибки в доказательствах,		
	в трактовке понятий и категорий, проявляет низкую культуру		
	знаний, не владеет основными умениями и навыками при		
	выполнении практических задач. Студент		
	отказывается от ответов на дополнительные вопросы		

9. Особенности организации обучения для лиц с ограниченными возможностями здоровья и инвалидов

При необходимости рабочая программа учебной дисциплины может быть адаптирована для обеспечения образовательного процесса инвалидов и лиц с ограниченными возможностями здоровья, в том числе с применением электронного обучения и дистанционных образовательных технологий.

Для этого требуется заявление студента (его законного представителя) и заключение психолого-медико-педагогической комиссии (ПМПК). В случае необходимости обучающимся из числа лиц с ограниченными возможностями здоровья (по заявлению обучающегося), а для инвалидов также в соответствии с индивидуальной программой реабилитации инвалида могут предлагаться следующие варианты восприятия учебной информации с учетом их индивидуальных психофизических особенностей:

- создание текстовой версии любого нетекстового контента для его возможного преобразования в альтернативные формы, удобные для различных пользователей;
- создание контента, который можно представить в различных видах без потери данных или структуры, предусмотреть возможность масштабирования текста и изображений без потери качества, предусмотреть доступность управления контентом с клавиатуры;
- создание возможностей для обучающихся воспринимать одну и ту же информацию из разных источников, например, так, чтобы лица с нарушениями слуха получали информацию визуально, с нарушениями зрения аудиально;
- применение программных средств, обеспечивающих возможность освоения навыков и умений, формируемых дисциплиной (модулем), за счёт альтернативных способов, в том числе виртуальных лабораторий и симуляционных технологий;
- применение электронного обучения, дистанционных образовательных технологий для передачи информации, организации различных форм интерактивной контактной работы обучающегося с преподавателем, в том числе вебинаров, которые могут быть использованы для проведения виртуальных лекций с возможностью взаимодействия всех участников дистанционного обучения, проведения семинаров, выступления с докладами и защиты выполненных работ, проведения тренингов, организации коллективной работы;
- применение электронного обучения, дистанционных образовательных технологий для организации форм текущего и промежуточного контроля;
- увеличение продолжительности сдачи обучающимся инвалидом или лицом с ограниченными возможностями здоровья форм промежуточной аттестации по отношению к установленной продолжительности их сдачи:
- продолжительность сдачи зачёта или экзамена, проводимого в письменной форме, не более чем на 90 минут;
- продолжительность подготовки обучающегося к ответу на зачёте или экзамене, проводимом в устной форме, не более чем на 20 минут;
- продолжительность выступления обучающегося при защите курсовой работы не более чем на 15 минут.

Лист изменений и дополнений

№ п/п	Виды дополнений и изменений с указанием страниц	Дата и номер протокола заседания кафедры (кафедр), на котором были рассмотрены и одобрены изменения и дополнения	Подпись (с расшифровкой) заведующего кафедрой (заведующих кафедрами)
1.			
2.			
3.			
4.			