МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ЛУГАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ ВЛАДИМИРА ДАЛЯ»

КОЛЛЕДЖ СЕВЕРОДОНЕЦКОГО ТЕХНОЛОГИЧЕСКОГО ИНСТИТУТА (филиал) ФГБОУ ВО «ЛГУ им. В. Даля»

КОМПЛЕКТ КОНТРОЛЬНО-ОЦЕНОЧНЫХ СРЕДСТВ для проведения текущего контроля, промежуточной аттестации в форме экзамена

по учебной дисциплине общеобразовательного цикла ЕН.01 Математика

специальность 13.02.11 Техническоая эксплуатация и обслуживание электрического и электромеханического оборудования (по отраслям)

РАССМОТРЕН И СОГЛАСОВАН методической комиссией Колледжа Северодонецкого технологического института (филиал) ФГБОУ ВО «ЛГУ им. В. Даля»

Протокол № <u>01</u> от «<u>13</u>» _ сентября_20<u>24</u> г.

Председатель комиссии

В.Н. Лескин

Разработан на основе федерального государственного образовательного стандарта среднего профессионального образование по специальности 13.02.11 Техническая эксплуатация и обслуживание электрического, электромеханического оборудования (по отраслям)

Ingligh

УТВЕРЖДЕН

заместителем директора

Р.П. Филь

Составитель(и):

Арушанова Ирина Ивановна, преподаватель СПО Колледжа Северодонецкого технологического института (филиал) ФГБОУ «ЛГУ им. В.Даля»

1. Паспорт комплекта контрольно-оценочных средств

Общие положения

Контрольно-оценочные средства (КОС) предназначены для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины ЕН.01. Математика

КОС включают контрольные материалы для проведения текущего контроля, промежуточной аттестации в форме дифференцированного зачета.

Результаты обучения: умения, знания и общие компетенции	Показатели оценки результата	Форма контроля и оценивания	
Уметь:			
У1. Решать прикладные задачи в области профессиональной деятельности. У2. Выполнять операции над матрицами и решать системы линейных уравнений.	 Вычисление предела функции в точке и в бесконечности; Исследование функции на непрерывность в точке; Нахождение производной функции; Нахождение производных высших порядков; Исследование функции и построение графика; Нахождение неопределенных интегралов; Вычисление определенных интегралов; Находить силу тока как производную количества электричества Формирование понимания глубокой общности в применении математического аппарата к широкому кругу разнообразных явлений природы. Ращионально распределять время на выполнение заданий. Решение квадратных уравнений с отрицательным дискриминантом; Действия над комплексными числами, заданными в тригонометрической форме Представление с помощью комплексных чисел в теоретической электротехнике напряжения, токов, сопротивления, запись законов Ома, Кирхгофа. Самоанализ и коррекция результатов собственной деятельности. Действия над приближенными значениями чисел Нахождение приближенными значениями для данных моментов времени Оценка данных и полученного результата Выбор способа решения систем линейных уравнений и неравенств Определение метода решения для нахождения результатов профессиональных задач. 	Фронтальный опрос Практическая работа, контрольная работа Проверка самостоятельной внеаудиторной работы Тестирование Дифференцированный зачет	
31. Значение математики в профессиональной деятельности и при освоении ППССЗ; 32. Основные математические методы решения прикладных задач в области профессиональной деятельности;	 Классификация точек разрыва; Бесконечно большие и бесконечно малые величины; Формулировка правил дифференцирования и перечисление производных основных элементарных функций Перечисление табличных интегралов Формулировка геометрического и механического смысла производной Виды дифференциальных уравнений; Приложение определенного интеграла к вычислению 	Фронтальный опрос Практическая работа, контрольная работа Тестирование Математический диктант Дифференцированный	
3 4. Основы интегрального и дифференциального исчисления	площадей плоских фигур, объемов тел вращения, пути, пройденного точкой	зачет	
36. Методы решений дифференциальных уравнений	- Описание процессов в естествознании и технике с помощью дифференциальных уравнений	_	
3 3. Основные понятия и методы математического анализа, линейной алгебры, теории комплексных чисел, теории вероятностей и математической статистики; уравнений	 - Линейные и квадратные уравнения; - Метод интервалов; - Метод подстановки - Применение формул приближенного вычисления - Формула Эйлера 	_	

35. Основные понятия теории графов.

2. Оценка освоения учебной дисциплины: Формы и методы оценивания

Предметом оценки служат умения и знания, предусмотренные ФГОС по дисциплине ЕН.01. *Математика*, направленные на формирование общих и профессиональных компетенций.

<u>Текущий контроль</u> проводится с целью объективной оценки качества освоения программы учебной дисциплины, а также стимулирования учебной работы студентов, мониторинга результатов образовательной деятельности, подготовки к промежуточной аттестации и обеспечения максимальной эффективности образовательного процесса.

Формы текущего контроля: проверочная работа, тестирование, опрос, выполнение и защита практических работ, наблюдение за деятельностью обучающихся и т.д.

<u>Промежуточная аттестация</u> проводится в форме дифференцированного зачета по окончании изучения учебной дисциплины к которому обучающиеся заранее знакомятся с перечнем вопросов по дисциплине.

Контроль и оценка освоения учебной дисциплины по темам (разделам)

	Формы и методы контроля				
	Текущий контроль		Промежуточная аттестация		
Элемент учебной дисциплины	Форма контроля	Проверяемы е У, 3 и формируемы е элементы ОК, ПК	Форма контроля	Проверяемые У, 3 и формируемые элементы ОК, ПК	
Раздел 1. Основные понятия и методы линейной алгебры			Дифференцированны й зачет Практ.вопр.№ 5; 22; 25; 29; 32; 39;50;55;65;68; 72;77;88;92;96. Теор.вопр.№5-8	У2 31,32 ОК 1-11	
Тема 1.1. Основные понятия линейной алгебры Методы решения систем линейных алгебраических уравнений	ПР 1-2 СР 1-3	У2 31,32 OK 1-11			
Раздел 2. Основы дискретной математики			Дифференцированны й зачет Теор.вопр№4,25 Практ.вопр.94	У1 36,31,32 ОК 1-11	
Тема 2.1 Операции с множествами. Основные понятия теории графов	ПР 3 СР 4	YI 36,31,32 OK 1-11			
Тема 2.2. Основные понятия. Комбинаторики	ПР 4 СР 5	<i>YI</i> 33,31,32 <i>OK</i> 1-11			
Раздел 3. Основы теории вероятностей, математической статистики			Дифференцированны й зачет Теор.вопр№26-28	УІ 31,32,33 ОК 1-11	
Тема 3.1. Основные понятия теории вероятности и математической статистики.	ПР 5-6 СР 6-7	УІ 33,31,32 ОК 1-11			
Тема 3.2. Случайная величина, ее функция распределения. Математическое ожидание и дисперсия случайной величины	ПР 7 СР 8	УI 33,31,32 OK 1-11			

Раздел 4. Математический анализ		Дифференцированны й зачет Теор.вопр№9-11, 22-24, 10-16 Практ.вопр.91;2;3;4; 6;7;8;9; 10;11;12;13;14; 15;16;17;18;19; 20;21;22;23;24;26; 27;28;30;31;33;34435;36;37;38;	VI 31,32 OK 1-11
---------------------------------	--	--	------------------------

			40;41;42;43;44;45; 46;47;48;49;51; 52;53;54;56;57;58; 59;60;61;62;63; 64;66;67;69;70;71; 73;74;75;76;78 ;79;80;81;82;83;84; 85;86;87;89;90;91; 93;95;97;98;99;100 ;101;102;103;104;1 05;106.	
Тема 4.1. Теория пределов	У.О. 1 ПР 8-9 СР 9	У1 31, 32 ОК 1-11		
Тема 4.2. Дифференцирование	У.О. 2 М.Д. 1 ПР 10-11 СР 10-11	<i>VI</i> 31,32		
Тема 4.3. Интегрирование.	М.Д. 2 ПР 12-13 СР 12	УІ 31,32 ОК 1-11		
Раздел 5. Дифференциальные уравнения. Ряды.			Дифференцированны й зачет Теор.вопр.№17-21	УІ 31,32,36 ОК 1-11
Тема 5.1.Обыкновенные дифференциальные уравнения	ПР 14-15 СР 13-14	У1 31,32,36 ОК 1-11		
Тема 5.2. Числовые последовательности и числовые ряды.	ПР 16 СР 15-16	УІ 31,32 ОК 1-11		
Раздел 6. Основные численные математические методы в профессиональной деятельности			Дифференцированны й зачет Теор.вопр.№1-3	VI 31,32, 33,36 OK 1-11
Тема 6.1. Численное интегрирование и численное дифференцирование математической подготовки электромеханика	ПР 17-18 СР 17	VI 31,32 OK 1-11		
Тема 6.2. Решение обыкновенных дифференциальных уравнений методом Эйлера, методом Рунге Кутта.	ПР 19 СР 18	VI 31,32,33,36 OK 1-11		

3. Задания для оценивания уровня освоения учебной дисциплины

- 3.1. Задания для текущего контроля прилагаются по темам в соответствии с ТАБЛИЦЕЙ 1.
 - 2. Задания для промежуточной аттестации прилагаются.

4. Условия проведения промежуточной аттестации

Количество вариантов заданий для аттестующихся — четыре варианта. Время выполнения задания — 135 мин.

5. Критерии оценивания для промежуточной аттестации

Экзамен по математике проводится в форме письменной работы.

- Работа оформляется на отдельных двойных листах (в клетку) со штампом учебного заведения.
- Содержание всех заданий соответствует действующей программе учебной дисциплины ЕН.01 Математика: алгебра и начала математического анализа, геометрия.
- Каждый вариант экзаменационной работы состоит из трех частей, отличающихся уровнем сложности:

В первой части (7 заданий) к каждому заданию предложено четыре возможных варианта ответа, из которых только один правильный. Задание считается выполненным правильно, если указана буква, которой обозначен правильный ответ, и сам ответ. Например: 1. а) 0,5 кг.

При этом НЕ ТРЕБУЕТСЯ записывать условия заданий и решение.

Если указан правильный ответ, то начисляется 1 балл, если же указанный обучающимся ответ — неправильный, то выполнение задания оценивается в 0 баллов. Если указано несколько букв, то такой ответ оценивается в 0 баллов, даже если среди множества ответов есть правильный.

Вторая часть работы состоит из 4 заданий. Задание этой части считается выполненным правильно, если оно сопровождается кратким условием и решением, при необходимости рисунком с записями соответствующих формул, а также записью правильного ответа. Каждое задание оценивается 0, 1 или 2 баллами. В 0 баллов оценивается неправильное решение задания. Если в задании получен правильный ответ, но решение имеет некоторые недочеты или при правильном ходе решения обучающийся допускает вычислительную ошибку, изза которой получен неверный ответ, то задание оценивается 1 баллом. Частичное выполнение задания второй части (например, если правильно найден один из двух корней уравнения системы уравнений) также оценивается 1 баллом.

Приведенный правильный ответ без необходимых записей решения оценивается в 0 баллов.

Третья часть аттестационной работы состоит из 3 заданий (2 по алгебре и 1 по геометрии), которые предполагают развернутое решение и обоснование каждого его этапа с записью развернутого ответа.

При этом обучающийся выполняет только одно задание по алгебре по своему выбору и одно задание по геометрии!

Задание по алгебре считают выполненным правильно, если обучающийся привел запись решения с обоснованием каждого этапа и дал верный ответ. Задание по геометрии предполагает подробное описание условия задачи и введение его в решение. Задания третьей части оценивается 4 баллами.

- Формулировки заданий обучающиеся не переписывают, а указывают только номер задания.
- Исправления и зачеркивания в оформлении решения заданий, если они сделаны аккуратно, не являются основанием для снижения оценки.
- Сумма баллов, начисленных за правильно выполненную экзаменационную работу, переводится в оценку по 5-балльной системе оценивания по специальной шкале.

Система начисления баллов за правильно выполненное задание для оценивания работ приведена в таблице 2.

Таблица 2

Номера заданий	Количество баллов	Всего
1.1 - 1.7	по 1 баллу	7 баллов
2.1 - 2.4	по 2 балла	8 баллов
два задания из 3.1-3.3.	по 4 балла	8 баллов
Всего баллов		23 балла

Соответствие количества баллов оценке в 5-балльной системе приведены в таблице 3.

Таблица 3

Количество набранных баллов	Оценка
0-2	1
3-9	2
10-15	3
16-20	4
21-23	5

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ЛУГАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ ВЛАДИМИРА ДАЛЯ»

КОЛЛЕДЖ СЕВЕРОДОНЕЦКОГО ТЕХНОЛОГИЧЕСКОГО ИНСТИТУТА (филиал) ФГБОУ ВО «ЛГУ им. В. Даля»

РАССМОТРЕН И ПРИНЯТ

методической комиссией Колледжа Северодонецкого технологического института (филиал) ФГБОУ ВО «ЛГУ им. В. Даля» Протокол № 01 от «13» сентября 2024 г.

УТВЕРЖДАЮ Заместитель директора

Infuf Р.П. Филь

«<u>13</u>» <u>сентября</u> 20<u>24</u> г.

Председатель комиссии

В.Н. Лескин

КОМПЛЕКТ ЗАДАНИЙ для проведения промежуточной аттестации

в форме <u>экзамена</u>

по учебной дисциплине общеобразовательного цикла ЕН.01 Математика

специальность 13.02.11 Техническая эксплуатация и обслуживание электрического и электромеханического оборудования (по отраслям)

для студентов 2 курса

Преподаватель

И.И. Арушанова

КОЛЛЕДЖ СЕВЕРОДОНЕЦКОГО ТЕХНОЛОГИЧЕСКОГО ИНСТИТУТА (филиал) ФГБОУ ВО «ЛГУ им. В. Даля»

Учебная дисциплина ЕН.01 Математика

Специальность 13.02.11 Техническая эксплуатация и обслуживание электрического и электромеханического оборудования (по отраслям) Курс 2

ВАРИАНТ № 1

Часть первая

Задания 1.1-1.7 содержат по четыре варианта ответов, из которых только ОДИН ответ ПРАВИЛЬНЫЙ. Выберите правильный, по Вашему мнению, ответ.

1.1.	Найти значение переменной $log_{3^5}3 = x$.					
	a) 1;	6) 5;	B) $\frac{1}{5}$;	r) 0.		
1.2.	Вычислить зна	ачение выражения √	-32 .			
	a) -2;	$6)-\frac{1}{2};$	в) -5;	г) 2.		
1.3.	Представить в	ыражение $\left(x^{\frac{1}{3}}\right)^9$ в ви	де степени.			
	a) $\frac{1}{3}$;	б) 3;	в) x ³ ;	Γ) χ^2 .		
1.4.	Найти общий	вид первообразной (f(x) = 0	x-3.		
	a) $F(x) = \frac{x^2}{2} - 3x$;		B) $F(x) = x^2 - 3x + C$;			
	$6)F(x) = 1 + \epsilon$	<i>C</i> ;	$\Gamma)F(x) = \frac{x^2}{2} - \frac{x^2}{2}$	3x + C.		
1.5.	Упростить выражение $sin3\alpha sin\alpha + cos\alpha cos3\alpha$.					
	a) cos2α;	δ) − <i>cos</i> 4α;	B) sin4α;	Γ) $-sin2\alpha$.		
1.6.	При каком k вектор $\vec{n}(-10; k; 5)$ коллинеарен вектору $\vec{m}(-2; -4; 1)$.					
	a) $k = -4$;	6) $k = -20$;	B) $k = -5$;	Γ) $k=5$.		
1.7.	Угол между образующей и плоскостью основания конуса равен 60 радиус основания конуса 4√3см. Найти высоту конуса.					
	а) 8см;	б) 12см;	в) 2√3 см;	г) 8√3 см.		

Часть вторая

Решение заданий 2.1-2.4 должно быть кратким. В случае необходимости проиллюстрируйте решение схемами, рисунками.

2.1.	Решить неравенство $25^{7-5x} \le 0,008$.
2.2.	Найти область определения функции
	$f(x) = \log_{\frac{1}{2}}(5x^2 + 3x - 8) + \frac{1}{\sqrt[4]{2x - 7}}.$

2.3.	Упростить $\frac{a^{\frac{1}{3}}-25}{a^{\frac{1}{6}}+5}$.
2.4.	Диагональ осевого сечения прямого кругового цилиндра наклонена к плоскости основания под углом 45° и равна 6√2 см. Найти объем цилиндра.

Часть третья

Решение задач 3.1-3.3 должно содержать обоснование. В нем необходимо записать последовательные логические действия и объяснения, сослаться на математические факты, из которых следует то или иное утверждение. Если необходимо, проиллюстрируйте решение схемами, графиками, таблицами.

3.1.	Найти промежутки возрастания и убывания функции $y = \frac{x^2}{x^2 - 16}$ и точки экстремума.
3.2.	Решить уравнение $cos^25x + 7sin^25x = 4 sin 10x$.
3.3.	В основании пирамиды лежит прямоугольный треугольник с гипотенузой 4см и острым углом 30°. Каждое боковое ребро пирамиды образует с плоскостью основания угол 60°. Найти объем пирамиды.

Председатель

методической комиссии

Преподаватель

КОЛЛЕДЖ СЕВЕРОДОНЕЦКОГО ТЕХНОЛОГИЧЕСКОГО ИНСТИТУТА (филиал) ФГБОУ ВО «ЛГУ им. В. Даля»

Учебная дисциплина ЕН.01 Математика

Специальность 13.02.11 Техническая эксплуатация и обслуживание электрического и электромеханического оборудования (по отраслям) Курс 2

ВАРИАНТ № 2

Часть первая

Задания 1.1-1.7 содержат по четыре варианта ответов, из которых только ОДИН ответ ПРАВИЛЬНЫЙ. Выберите правильный, по Вашему мнению, ответ.

1.1.	Найдите значение выражения $\log_6 9 + \log_6 4$.					
	a) log ₆ 13;	б) 12;	в) 6;	г) 2.		
1.2.	Решите уравнен	$\sqrt{2x-3}=3.$	di.	2		
	a) 2;	б) 3;	в) 6;	г) 9.		
1.3.	Решите неравено	ство $\log_{0,2} x > \log_{0,2}$	5.	· ·		
	a) (-∞; 5);		B) (0; 5)∪(5; +∞);			
	δ) (5; +∞);Γ) (0; 5).					
1.4.	Укажите общий	вид первообразных	функции $f(x) =$	$10x^4 - 6x.$		
	a) $2x^3 - 3x^2 + C$;	6) $2x^3 - 4x^2 + C$;	B) $5x^5 - 4x^2 + C$;	Γ) $40x^3 - 6 + C$.		
1.5.	Укажите множество значений функции $y = \cos x + 3$.					
	a) [-1; 1];	б) [0; 3];	в) [2; 4];	г) [0; 2].		
1.6	Вычислите объем шара с радиусом 3 см.					
	a) 36π cm ³ ;	б) 9π см ³ ;	B) 108π cm ³ ;	r) 54π cm ³ .		
1.7.	При каких значениях m и n векторы \bar{a} (-15; m ; -10) и \bar{b} (3; коллинеарны?					
	a) $m = 20$; $n = 2$;		B) $m = 20$; $n = -2$;			
	б) <i>m</i> = -20; <i>n</i> = -2	2;	r) $m = -20$; $n = 2$.			

Часть вторая

Решение заданий 2.1-2.4 должно быть кратким. В случае необходимости проиллюстрируйте решение схемами, рисунками.

2.1.	Чему равно значение выражения $\cos(2\alpha - \frac{\pi}{2})$, если $\cos\alpha = -0.8$ и $\frac{\pi}{2} < \alpha < \pi$?
2.2.	Решите уравнение: $64^x - 7 \cdot 8^x - 8 = 0$.
2.3.	Чему равен угловой коэффициент касательной к графику функции $f(x) = \ln(2x+1)$ в точке с абсциссой $x_0=1,5$?
2.4.	Объем конуса с радиусом основания 6 см равен 96 д см ³ . Вычислите площадь боковой поверхности конуса.

Часть третья

Решение задач 3.1-3.5 должно содержать обоснование. В нем необходимо записать последовательные логические действия и объяснения, сослаться на математические факты, из которых следует то или иное утверждение. Если необходимо, проиллюстрируйте решение схемами, графиками, таблицами.

3.1.	Решите уравнение $6\sin^2 x - 3\sin x \cos x - 5\cos^2 x = 2$.
3.2.	Число 60 представьте в виде суммы двух положительных чисел так, чтобы сумма их квадратов была наименьшей.
3.3.	Основанием пирамиды является правильный треугольник со стороной 6 см. Одна боковая грань пирамиды перпендикулярна плоскости основания, а две другие наклонены к плоскости основания под углом 45^0 . Найдите объем пирамиды.

Председатель

методической комиссии

Преподаватель

КОЛЛЕДЖ СЕВЕРОДОНЕЦКОГО ТЕХНОЛОГИЧЕСКОГО ИНСТИТУТА (филиал) ФГБОУ ВО «ЛГУ им. В. Даля»

Учебная дисциплина ЕН.01 Математика

Специальность 13.02.11 Техническая эксплуатация и обслуживание электрического и электромеханического оборудования (по отраслям) Курс 2

ВАРИАНТ № 3

Часть первая

Задания 1.1-1.7 содержат по четыре варианта ответов, из которых только ОДИН ответ ПРАВИЛЬНЫЙ. Выберите правильный, по Вашему мнению, ответ.

1.1.	Вычислите: $\sqrt[3]{-0.3} \cdot \sqrt[3]{-0.09}$.			
	a) 0,027;	б) 0,03;	в) – 0,3;	г) 0,3.
1.2.	Какая функция является возрастающей?			
	a) $y = 0,2^X$;	6) $y = 3^x$;	$\mathbf{B}) \ y = \left(\frac{5}{6}\right)^{x};$	$r) y = 2^{-x}$.
1.3.	Укажите промежуток, которому принадлежит корень уравнения $\log_2(x+1)=4$.			
	a) (8; 10);	б) (14; 16);	в) (6; 8);	г) (4; 6).
1.4.	Упростите выра:	жение $5\sin^2 x - 4 +$	$5\cos^2 x$.	
	a) 1;	б) 9;	в) – 9;	r) – 4.
1.5.	Найти производную функции $f(x) = \frac{x^3}{3} - \frac{x^2}{2}$.			
	a) $f'(x) = \frac{x^2}{3} - \frac{x}{2}$;	6) $f'(x) = x^2 - x$;	B) $f'(x) = x^3 - x^2$;	$\Gamma) f'(x) = 3x^2 - 2x$
1.6.	Две прямые a и b параллельны, а прямые b и c перпендикулярны. Чему равен угол между a и c :			
	a) 0°;	б) 180°;	в) 90°;	г) нельзя определить.
1.7.	Чему равен радиус сферы, площадь поверхности которой равна $100~\pi~{\rm cm}^2$?			
	а) 100 см;	б) 50 см;	в) 5 см;	г) 20 см.

Часть вторая

Решение заданий 2.1-2.4 должно быть кратким. В случае необходимости проиллюстрируйте решение схемами, рисунками.

2.1.	Решите неравенство $7^{x+2} - 14 \cdot 7^x \le 5$.	
2.2.	Решите систему уравнений: $\begin{cases} x^2 - y^2 = 24, \\ x - y = 2. \end{cases}$	

2.3.	Упростите выражение: $\frac{18}{a+3a^{\frac{1}{2}}} - \frac{6}{a^{\frac{1}{2}}}$.
2.4.	Из точки к плоскости проведены две наклонные, равные 23 см и 33 см. Найдите расстояние от этой точки до плоскости, если проекции наклонных относятся как 2:3.

Часть третья

Решение задач 3.1-3.3 должно содержать обоснование. В нем необходимо записать последовательные логические действия и объяснения, сослаться на математические факты, из которых следует то или иное утверждение. Если необходимо, проиллюстрируйте решение схемами, графиками, таблицами.

3.1.	Вычислите площадь фигуры, ограниченной параболой $y=8-x^2$ и прямой $y=4$.
3.2.	Решите уравнение: $\sin^2 x + 0.5 \sin 2x = 1$.
3.3.	Диагональ правильной четырехугольной призмы равна 15 см, а диагональ боковой грани — 12 см. Найдите площадь боковой поверхности призмы.

Председатель

методической комиссии

Преподаватель

КОЛЛЕДЖ СЕВЕРОДОНЕЦКОГО ТЕХНОЛОГИЧЕСКОГО ИНСТИТУТА (филиал) ФГБОУ ВО «ЛГУ им. В. Даля»

Учебная дисциплина ЕН.01 Математика

Специальность 13.02.11 Техническая эксплуатация и обслуживание электрического и электромеханического оборудования (по отраслям)

Курс 2

ВАРИАНТ № 4

Часть первая

Задания 1.1-1.7 содержат по четыре варианта ответов, из которых только ОДИН ответ ПРАВИЛЬНЫЙ. Выберите правильный, по Вашему мнению, ответ.

			21).	Найдите значение выражения $(\sqrt[3]{4^3 \cdot 27^2})^3$.				
	a) 8;	6) 18;	в) 6;	г) 144.				
1.2.	Решите неравенство $5^{3-x} < \frac{1}{25}$.							
	a) (-∞; 5);	б) (1; +∞);	в) (-∞; 1);	r) (5; +∞).				
1.3.	Укажите множество значений функции $y = \log_{0.2}(x+4)$.							
-	a) (0; +∞);	б) (−4; +∞);	в) (4; +∞);	Γ) $(\infty; +\infty)$.				
1.4.	Упростите выражение $-4\sin^2 x + 5 - 4\cos^2 x$.							
	a) 1;	6) 9;	в) 5;	г) 4.				
1.5.	Вычислите неопределенный интеграл $\int (2x-\frac{1}{x^2})dx$.							
	a) $x^2 - \frac{1}{x^2} + C$;	6) $x^2 + \frac{1}{x} + C$;	B) $2x^2 - \frac{1}{x} + C$;	Γ) $2x^2 + \frac{1}{x} + C$,				
1.6.	Точка E — середина AB . Найдите координаты точки E , если A (14; -8; 5), B (4; -2; -7).							
	a) E (-9; 5; -1);	6) E (9; -5; -1);	в) Е (-9; -5; -1);	r) E (9; 5; 1).				
1.7.	Найдите объем правильной треугольной пирамиды, площадь основания которой равна 12 см ² , а высота – 8 см.							
	а) 96 см ³ ;	б) 32 см ³ ;	в) 48 см ³ ;	г) 24 см ³ .				

Часть вторая

Решение заданий 2.1-2.4 должно быть кратким. В случае необходимости проиллюстрируйте решение схемами, рисунками.

2.1.	Решите уравнение: $\log_6(x-2) + \log_6(x-11) = 2$.	
2.2.	Найдите наименьшее значение функции $f(x) = \frac{x^4}{4} - 2x^2$ на промежутке [0; 4].	
2.3.	Найдите область определения функции $f(x) = \frac{10}{2 - \sqrt[4]{x}}$.	

Диагональ боковой грани правильной треугольной призмы образует с основанием угол 30°. Найти объем призмы, если площадь ее боковой поверхности 72√3 см².

Часть третья

Решение задач 3.1-3.3 должно содержать обоснование. В нем необходимо записать последовательные логические действия и объяснения, сослаться на математические факты, из которых следует то или иное утверждение. Если необходимо, проиллюстрируйте решение схемами, графиками, таблицами.

3.1.	Найдите промежутки возрастания и убывания и точки экстремума
3.2.	Докажите тождество: $2\cos^2(\frac{\pi}{4} - 2\alpha) = \sin 4\alpha + 1$.
3.3.	В цилиндре параллельно его оси проведена плоскость, пересекающая нижнее основание цилиндра по хорде, которая видна из центра этого основания под углом α. Диагональ образовавшегося сечения наклонена к плоскости основания под углом β. Найдите площадь боковой поверхности цилиндра, если площадь его основания равна S.

Председатель

методической комиссии

Преподаватель