МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Луганский государственный университет имени Владимира Даля»

Колледж Северодонецкого технологического института (филиал) ФГБОУ ВО «ЛГУ им. В. Даля»

КОМПЛЕКТ КОНТРОЛЬНО-ОЦЕНОЧНЫХ СРЕДСТВ для проведения текущего контроля и промежуточной аттестации в форме экзамена

по учебной дисциплине

ОП.02 Электротехника и электроника

по специальности

<u>13.02.11 Техническая эксплуатация и обслуживание электрического и</u> <u>электромеханического оборудования (по отраслям)</u> РАССМОТРЕН И СОГЛАСОВАН методической комиссией Колледжа Северодонецкого технологического института (филиал) ФГБОУ ВО «ЛГУ им. В. Даля»

Протокол № <u>01</u> от «<u>13</u>» <u>сентября 2024</u> г.

Председатель комиссии

В.Н. Лескин

Разработан на основе федерального государственного образовательного стандарта среднего профессионального образование по специальности

(MBmay)

13.02.11 Техническая эксплуатация и обслуживание электрического и электромеханического оборудования (по отраслям)

УТВЕРЖДЕН

заместителем директора

Р.П. Филь

1. Паспорт комплекта контрольно-оценочных средств

В результате освоения учебной дисциплины ОП.02 Электротехника и электроника обучающийся должен обладать предусмотренными ФГОС СПО по специальности 13.02.11 Техническая эксплуатация и обслуживание электрического и электромеханического оборудования (по отраслям) следующими умениями (У):

- 1 1 Рассчитывать параметры электрических, магнитных цепей;
- 2 2 Снимать показания и пользоваться электроизмерительными приборами;
 - 3 З Собирать электрические схемы;
 - 4 4 Читать принципиальные, электрические и монтажные схемы;
- 5 5 Применять электронные компоненты при составлении электрических схем;

знаниями (3):

- 31 Методов расчета и измерения основных параметров электрических, магнитных цепей;
 - 32 Основных законов электротехники;
- 33 Способов получения, передачи и использования электрической энергии;
 - 34 Характеристик и параметров электрических и магнитных полей;
- 35 Основ физических процессов в проводниках, полупроводниках и диэлектриках, и их свойства;
 - 36 Параметров электрических схем;
- 37 Принципов выбора электрических и электронных устройств и приборов;
- 38 Принципов действия, устройства, основных характеристик электротехнических и электронных устройств и приборов;
- 39 Классификации электронных приборов, их устройства и область применения;
- 310 Классификации, устройства и принципов работы различных источников питания.

которые формируют профессиональные компетенции:

- ПК 1.1. Выполнять операции по техническому обслуживанию и ремонту электрического и электромеханического оборудования.
- ПК 1.2. Проводить диагностику и испытания электрического и электромеханического оборудования.

- ПК 2.1. Осуществлять планирование работ по эксплуатации электрического и электромеханического оборудования.
- ПК 3.1. Проводить диагностику технического состояния электрического и электромеханического оборудования энергоустановок.
- ПК 3.2. Осуществлять проведение работ по техническому обслуживанию и ремонту электрического и электромеханического оборудования энергоустановок.

и общими компетенциями:

- OK 01. Выбирать способы решения задач профессиональной деятельности применительно к различным контекстам;
- OК 02. Использовать современные средства поиска, анализа и интерпретации информации, и информационные технологии для выполнения задач профессиональной деятельности;
- ОК 05. Осуществлять устную и письменную коммуникацию на государственном языке Российской Федерации с учетом особенностей социального и культурного контекста;
- OК 09. Пользоваться профессиональной документацией на государственном и иностранном языках.

2. Оценивание уровня освоения учебной дисциплины

Предметом оценивания служат умения и знания, предусмотренные ФГОС СПО по дисциплине ОП.02 Электротехника и электроника, направленные на формирование общих и профессиональных компетенций. Промежуточная аттестация по учебной дисциплине проводится в форме экзамена.

Контроль и оценивание уровня освоения учебной дисциплины по темам (разделам)

Таблица 1

Элемент учебной дисциплины	Формы и методы контроля			
	Текущий контроль		Промежуточная аттестация	
	Форма контроля	Проверяемые ПК, ОК, У, 3	Форма контроля	Проверяемые ПК, ОК, У, 3
Раздел 1. Электротехника				
Тема 1.1. Электрическое поле	Устный опрос Самостоятельная работа	У1-У5; 31-310; ПК 1.1-1.2, ПК 2.1, ПК 3.1-3.2 ОК 01-02, ОК 05, ОК 09.		
Тема 1.2. Электрические цепи постоянного тока	Устный опрос Практическая работа №1 Самостоятельная работа	У1-У5; 31-310; ПК 1.1-1.2, ПК 2.1, ПК 3.1-3.2 ОК 01-02, ОК 05, ОК 09.		
Тема 1.3. Магнитное поле	Устный опрос Практическая работа №2 Самостоятельная работа	У1-У5; 31-310; ПК 1.1-1.2, ПК 2.1, ПК 3.1-3.2 ОК 01-02, ОК 05, ОК 09.		
Тема 1.4. Электрические цепи переменного тока	Устный опрос Практическая работа №3 Самостоятельная работа	У1-У5; 31-310; ПК 1.1-1.2, ПК 2.1, ПК 3.1-3.2 ОК 01-02, ОК 05, ОК 09.		
Тема 1.5. Понятие, классификация и принцип действия электрических машин	Устный опрос Тематическая контрольная работа	У1-У5; 31-310; ПК 1.1-1.2, ПК 2.1, ПК 3.1-3.2 ОК 01-02, ОК 05, ОК 09.		

Раздел 2. Электроника				
Тема 2.1.	Устный опрос Практическая	<i>V1-V5; 31-310;</i>		
Электронные приборы	работа №4 Самостоятельная	$\Pi K 1.1-1.2, \Pi K 2.1,$		
	работа	ПК 3.1-3.2		
		OK 01-02, OK 05, OK 09.		
Тема 2.2.	Устный опрос Практическая	<i>У1-У5; 31-310;</i>		
Источники питания	работа №5 Самостоятельная	$\Pi K 1.1-1.2, \Pi K 2.1,$		
	работа	ПК 3.1-3.2		
		OK 01-02, OK 05, OK 09.		
Тема 2.3.	Устный опрос	<i>У1-У5; 31-310;</i>		
Усилители и генераторы	Тематическая контрольная	$\Pi K 1.1-1.2, \Pi K 2.1,$		
	работа	ПК 3.1-3.2		
		OK 01-02, OK 05, OK 09.		
Промежуточная аттестация			Экзамен	<i>V1-V5; 31-310;</i>
				$\Pi K 1.1-1.2, \Pi K 2.1,$
				ПК 3.1-3.2
				OK 01-02, OK 05, OK 09.

3. Задания для оценки освоения учебной дисциплины

3.1. Задания для текущего контроля

Текущий контроль знаний проводится с помощью устных опросов, самостоятельных и практических работ, а также тематических контрольных работ.

- 3.2. Задания для промежуточной аттестации
 - 1. Электрическое поле и его основные характеристики.
 - 2. Закон Кулона.
- 3. Диэлектрическая проницаемость среды. Напряженность и потенциал точки электрического поля.
 - 4. Энергия электрического поля.
- 5. Электрическая ёмкость. Зависимость ёмкости конденсатора от диэлектрической проницаемости и геометрических размеров.
- 6. Общая ёмкость при последовательном, параллельном и смешанном соединении конденсаторов.
- 7. Источники и приёмники электрической энергии. ЭДС. Соединение источников эдс.
- 8. Сила тока, направление движения. Электрический ток в различных средах.
- 9. Сопротивление и проводимость проводников. Последовательное, параллельное и смешанное соединение сопротивлений.
 - 10. Закон Ома для участка цепи.
 - 11. Первое и второе правило Кирхгофа.
- 12. Расчет простых и сложных электрических цепей аналитическим методом.
 - 13. Закон Джоуля Ленца. Нагревание проводников электрическим током.
- 14. Работа и мощность электрического тока. Режим работы электрической цепи. Кпд.
- 15. Типы нелинейных элементов. Графический метод расчёта нелинейных электрических цепей.
 - 16. Основные параметры магнитного поля.
- 17. Магнитные свойства веществ. Классификация веществ к магнитным свойствам.
- 18. Магнитные материалы. Циклическое перемагничивание магнитных материалов.
 - 19. Элементы магнитной цепи. Закон Ома магнитной цепи.
 - 20. Закон Ампера для магнитной цепи.
 - 21. Воздействие магнитного поля на проводник с током.

- 22. Закон электромагнитной индукции. Определение направления индуцированной ЭДС.
 - 23. Индуктивность и явление самоиндукции.
 - 24. Определение эдс самоиндукции. Расчёт индуктивности.
 - 25. Взаимная индукция и её использование в технике.
 - 26. Параметры и формы представления переменного тока.
- 27. Активное, индуктивное и ёмкостное сопротивление в цепи переменного тока, векторные диаграммы токов и напряжений при последовательном соединении.
- 28. Электрические схемы включения элементов в цепи переменного тока, использование закона Ома и правил Кирхгофа для расчета цепей переменного тока.
 - 29. Условия возникновения и особенности резонансов токов и напряжений.
 - 30. Коэффициент мощности. Влияние нагрузки на коэффициент мощности.
- 31. Простые и сложные цепи переменного тока. Векторные диаграммы. Особенности их построения.
 - 32. Активная, реактивная и полная мощности в цепи переменного тока.
 - 33. Несинусоидальные токи.
- 34. Соединение трёхфазного генератора «звездой». Векторные диаграммы с учётом активной нагрузки.
 - 35. Получение тока и напряжения в трёхфазной системе.
 - 36. Методы измерения электрических величин.
 - 37. Виды погрешностей. Класс точности измерительных приборов.
 - 38. Средства измерения электрических величин, их характеристики.
 - 39. Классификация электроизмерительных приборов.
 - 40. Назначение устройство и принцип действия трансформатора.
 - 41. Однафазный трансформатор. Режим работы. Основные параметры.
 - 42. Трехфазные трансформаторы. Схемы и группы соединений.
 - 43. Схемы и группы соединений трёхфазных трансформаторов.
 - 44. Основные конструктивные части электрических машин.
- 45. Устройство, принцип действия и классификация машин переменного тока.
- 46. Асинхронные двигатели, их мощность, частота вращения. Скольжение и вращающий момент.
- 47. Устройство, принцип действия и классификация машин постоянного тока.
- 48. Генераторы постоянного тока, схемы включения, внешняя и регулировочные характеристики.

- 49. Классификация электрических двигателей.Вращающий момент, уравнение механического состояния.
- 50. Двигатели постоянного тока. Принцип действия, рабочие характеристики, кпд.
 - 51. Полупроводниковые диоды
 - 52. Полупроводниковые стабилитроны.
 - 53. Биполярные транзисторы.
 - 54. Полевые транзисторы.
 - 55. Выпрямители.
 - 56. Сглаживающие фильтры.
 - 57. Классификация и принцип работы усилителей.
 - 58. Генераторы гс и 1с. Принцип работы и классификация.
 - 59. Мультивибраторы.
 - 60. Триггеры.
- 61. Найти эквивалентное сопротивление цепи $R_{^{9}K^{B}}$ при: R_{1} =10 Ом, R_{2} = 15 Ом, R_{3} = 5 Ом, R_{4} = 10 Ом, R_{5} = 20 Ом.
- 62. Найти эквивалентное сопротивление цепи $R_{^{3}K^{B}}$ при: R_{1} = 5 Ом, R_{2} = 10 Ом, R_{3} = 15 Ом, R_{4} = 15 Ом, R_{5} = 25 Ом.
- 63. Найти эквивалентное сопротивление цепи $R_{^{9}K^{B}}$ при: R_{1} = 15 Ом, R_{2} = 20 Ом, R_{3} = 30 Ом, R_{4} = 15 Ом, R_{5} = 10 Ом.
- 64. Найти эквивалентное сопротивление цепи $R_{^{9}K^{B}}$ при: R_{1} = 30 Ом, R_{2} = 50 Ом, R_{3} = 10 Ом, R_{4} = 25 Ом, R_{5} = 15 Ом.
- 65. Найти эквивалентное сопротивление цепи $R_{_{9K}{}^{B}}$ при: $R_{1}=25$ Ом, $R_{2}=60$ Ом, $R_{3}=100$ Ом, $R_{4}=70$ Ом, $R_{5}=30$ Ом.
- 66. Найти эквивалентное сопротивление цепи $R_{_{9K}}$ при: R_1 = 50 Ом, R_2 = 45 Ом, R_3 = 35 Ом, R_4 = 75 Ом, R_5 = 15 Ом.
- 67. Найти эквивалентное сопротивление цепи $R_{_{9K}{}^{B}}$ при: $R_{1}=40$ Ом, $R_{2}=20$ Ом, $R_{3}=60$ Ом, $R_{4}=55$ Ом, $R_{5}=25$ Ом.
- 68. Найти эквивалентную ёмкость $C_{9 \text{KB}}$ смешанного соединения конденсаторов: $C_1 = 40$ мк Φ , $C_2 = 20$ мк Φ , $C_3 = 60$ мк Φ , $C_4 = 55$ мк Φ , $C_5 = 25$ мк Φ .
- 69. Найти эквивалентную ёмкость Сэкв смешанного соединения конденсаторов: C1=100 мк Φ , C2=200 мк Φ , C3=300 мк Φ , C4=550 мк Φ , C5=250 мк Φ .
- 70. Найти эквивалентную ёмкость C_{9KB} смешанного соединения конденсаторов: $C_1 = 250$ мк Φ , $C_2 = 400$ мк Φ , $C_3 = 100$ мк Φ , $C_4 = 150$ мк Φ , $C_5 = 100$ мк Φ .
- 71. Найти эквивалентную ёмкость $C_{\text{экв}}$ смешанного соединения конденсаторов: $C_1 = 50$ мк Φ , $C_2 = 150$ мк Φ , $C_3 = 120$ мк Φ , $C_4 = 170$ мк Φ , $C_5 = 100$ мк Φ

- 72. Найти эквивалентную ёмкость C_{9KB} смешанного соединения конденсаторов: $C_1 = 60$ мк Φ , $C_2 = 120$ мк Φ , $C_3 = 200$ мк Φ , $C_4 = 150$ мк Φ , $C_5 = 300$ мк Φ
- 73. Найти эквивалентную ёмкость $C_{9 \text{KB}}$ смешанного соединения конденсаторов: $C_1 = 100$ мк Φ , $C_2 = 200$ мк Φ , $C_3 = 500$ мк Φ , $C_4 = 100$ мк Φ , $C_5 = 300$ мк Φ .
- 74. Найти эквивалентную ёмкость Сэкв смешанного соединения конденсаторов: C1 = 20 мкФ, C2 = 15 мкФ, C3 = 30 мкФ, C4 = 50 мкФ, C5 = 10 мкФ.
- 75. Найти эквивалентную ёмкость Сэкв смешанного соединения конденсаторов: C1 = 60 мкФ, C2 = 55 мкФ, C3 = 70 мкФ, C4 = 50 мкФ, C5 = 20 мкФ.
- 76. Составить уравнения по законам Кирхгофа для сложной электрической цепи при: $E_1 = 10$ B, $E_2 = 15$ B, $R_1 = 10$ Oм, $R_2 = 15$ Oм, $R_3 = 5$ Ом, $R_4 = 10$ Ом.
- 77. Составить уравнения по законам Кирхгофа для сложной электрической цепи при: E1=20~B, E2=25~B, R1=15~Om, K2=20~Om, R3=5~Om, R4=40~Om
- 78. Составить уравнения по законам Кирхгофа для сложной электрической цепи при: E1=15~B, E2=30~B, R1=45~Om, K2=30~Om, R3=25~Om, R4=45~Om
- 79. Составить уравнения по законам Кирхгофа для сложной электрической цепи при: E1 = 20 B, E2 = 50 B, R1 = 25 Om, K2 = 70 Om, R3 = 20 Om, R4 = 55 Om
- 80. Составить уравнения по законам Кирхгофа для сложной электрической цепи при: $E_1 = 10$ B, $E_2 = 5$ B, R = 20 OM, $R_2 = 35$ OM, $R_3 = 40$ OM, $R_4 = 30$ OM.
- 81. Составить уравнения по законам Кирхгофа для сложной электрической цепи при: $E_1 = 100 \text{ B}$, $E_2 = 75 \text{ B}$, R = 50 Om, $R_2 = 85 \text{ Om}$, $R_3 = 95 \text{ Om}$, $R_4 = 100 \text{ Om}$.
- 82. Составить уравнения по законам Кирхгофа для сложной электрической цепи при: $E_1 = 50$ B, $E_2 = 45$ B, $R_1 = 65$ Oм, $R_2 = 15$ Oм, $R_3 = 35$ Oм, $M_4 = 70$ Ом.
- 83. В электрическую цепь с напряжением и = 50 В последовательно включены активное R=50 Ом, индуктивное $X_L=15$ Ом и ёмкостное $X_c=20$ Ом сопротивления. Определить полное сопротивление Z, ток в цепи I, коэффициент мощности $\cos \varphi$, угол сдвига фаз φ , полную S, активную P и реактивную Q мощности.
- 84. В электрическую цепь с напряжением и = 100 В последовательно включены активное R = 70 Ом, индуктивное $X_L = 30$ Ом и ёмкостное $X_c = 15$ Ом сопротивления. Определить полное сопротивление Z, ток в цепи I, коэффициент мощности $\cos \varphi$, угол сдвига фаз φ , полную S, активную P и реактивную Q мощности.
- 85. В электрическую цепь с напряжением и = 50 В последовательно включены активное R = 10 Ом, индуктивное XL = 5 Ом и ёмкостное XC = 10 Ом

сопротивления. Определить полное сопротивление Z, ток в цепи I, коэффициент мощности соsф, угол сдвига фаз ф, полную S, активную P и реактивную Q мощности.

- 86. В электрическую цепь с напряжением и = 80 В последовательно включены активное R=50 Ом, индуктивное $X_L=15$ Ом и ёмкостное $X_c=15$ Ом сопротивления. Определить полное сопротивление Z, ток в цепи I, коэффициент мощности $\cos \varphi$, угол сдвига фаз φ , полную S, активную P и реактивную Q мощности.
- 87. В электрическую цепь с напряжением и = 200 В последовательно включены активное R=100 Ом, индуктивное XL=50 Ом и ёмкостное XC=40 Ом сопротивления. Определить полное сопротивление Z, ток в цепи I, коэффициент мощности $\cos \varphi$, угол cдвига φ аз φ , полную S, активную P и реактивную Q мощности.
- 88. В электрическую цепь с напряжением и = 55 В последовательно включены активное R=45 Ом, индуктивное $X_L=20$ Ом и ёмкостное $X_c=35$ Ом сопротивления. Определить полное сопротивление Z, ток в цепи I, коэффициент мощности $cos \varphi$, угол сдвига φ фаз φ , полную S, активную P и реактивную Q мощности.
- 89. В электрическую цепь с напряжением и = 55 В последовательно включены активное R=60 Ом, индуктивное $X_L=25$ Ом и ёмкостное $X_c=40$ Ом сопротивления. Определить полное сопротивление Z, ток в цепи I, коэффициент мощности $cos \varphi$, угол сдвига φ фаз φ , полную S, активную P и реактивную Q мощности.
- 90. В электрическую цепь с напряжением и = 15 В последовательно включены активное R=10 Ом, индуктивное $X_L=5$ Ом и ёмкостное $X_c=10$ Ом сопротивления. Определить полное сопротивление Z, ток в цепи I, коэффициент мощности $\cos \varphi$, угол cдвига φ аз φ , полную S, активную P и реактивную Q мощности.

4. Условия проведения промежуточной аттестации

Количество вариантов заданий для аттестующихся - 10

Максимальное время выполнения задания - 35 мин. (теоретическое задание - 15 мин; практическое задание -20 мин.)

Экзамен проводится в устной форме, состоит из ответов обучающихся на вопросы и решение задачи.

Структура экзаменационных билетов:

- первый и второй вопросы теоретические, направленные на проверку знаний по дисциплине;
 - третий вопрос практический (решение задачи).

Задания экзамена направлены на проверку умений и навыков, полученных обучающимся при изучении дисциплины. Билеты экзамена равноценны по трудности, одинаковы по структуре.

Оборудование: цифровой мультиметр, комплект резисторов различного номинала, источники питания различного номинала, графические материалы по электротехнике.

5. Критерии оценивания для промежуточной аттестации

	Показатели оценки результатов	
Уровень учебных		
достижений		
«5»	Студент глубоко и прочно усвоил программный материал,	
	исчерпывающе, грамотно и логически стройно его излагает, тесно	
	увязывает теорию с практикой. При этом студент не затрудняется с	
	ответом при видоизменении задания, свободно справляется с заданиями,	
	вопросами и другими видами контроля знаний, правильно обосновывает	
	принятые решения, владеет разносторонними навыками и приемами	
	выполнения практических заданий.	
«4»	Студент твердо знает программный материал, грамотно и по существу	
	излагает его, не допускает существенных неточностей в ответе на	
	вопрос, правильно применяет теоретические положения при решении	
	практических вопросов и заданий, владеет необходимыми приемами их	
	выполнения.	
«3»		
	Студент имеет знания только основного материала, но не усвоил его	
	детали, допускает неточности, недостаточно правильные формулировки,	
	нарушения последовательности в изложении программного материала и	
	испытывает трудности в выполнении практических заданий.	
«2»	Студент не усвоил значительной части программного материала,	
	допускает существенные ошибки, неуверенно, с большим затруднением	
	выполняет практические задания.	

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ЛУГАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ ВЛАДИМИРА ДАЛЯ»

КОЛЛЕДЖ СЕВЕРОДОНЕЦКОГО ТЕХНОЛОГИЧЕСКОГО ИНСТИТУТА (филиал) ФГБОУ ВО «ЛГУ им. В. Даля»

РАССМОТРЕН И ПРИНЯТ методической комиссией Колледжа Северодонецкого технологического института (филиал) ФГБОУ ВО «ЛГУ им. В. Даля» Протокол № 01 от «13» сентября 2024 г.

Председатель комиссии В.Н. Лескин

УТВЕРЖДАЮ Заместитель директора

Indeef Р.П. Филь

«<u>13</u>» <u>сентября</u> 20<u>24</u> г.

КОМПЛЕКТ ЗАДАНИЙ для проведения промежуточной аттестации в форме экзамена

(MBmu)

по учебной дисциплине ОП.02 Электротехника

по специальности

13.02.11 Техническая эксплуатация и обслуживание электрического и электромеханического оборудования (по отраслям)

для студентов II курса		
формы обучения очной		
	Преподаватель	А.В.Сумец

колледж

Учебная дисциплина ОП.02 Электротехника и электроника Специальность 13.02.11 Техническая эксплуатация и обслуживание электрического и электромеханического оборудования (по отраслям) Курс II Форма обучения очная

БИЛЕТ № 1

- 1. Закон Кулона.
- 2. Трехфазные трансформаторы. Схемы и группы соединений.
- 3. Найти эквивалентное сопротивление цепи R_{3KB} при: $R_1 = 10$ Ом, $R_2 = 15$ Ом, $R_3 = 5$ Ом, $R_{\pi} = 10$ Ом, $R_5 = 20$ Ом.

Председатель методической комиссии

Преподаватель

В.Н. Лескин

А.В.Сумец

ФГБОУ ВО «ЛУГАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ ВЛАДИМИРА ДАЛЯ»

колледж

Учебная дисциплина ОП.02 Электротехника и электроника Специальность 13.02.11 Техническая эксплуатация и обслуживание электрического и электромеханического оборудования (по отраслям) Курс II Форма обучения <u>очная</u>

БИЛЕТ № 2

- 1. Средства измерения электрических величин, их характеристики.
- 2. Источники и приёмники электрической энергии. Эдс. Соединение источников эдс.
- 3. Найти эквивалентное сопротивление цепи $R_{\rm 9KB}$ при: R_1 = 15 Om, R_2 = 20 Om, R_3 = 30 Om, R_3 = 15 Om, R_5 = 10 Om.

Председатель методической комиссии

Преподаватель

В.Н. Лескин

A.B.Cvmeii

колледж

Учебная дисциплина ОП.02 Электротехника и электроника Специальность 13.02.11 Техническая эксплуатация и обслуживание электрического и электромеханического оборудования (по отраслям) Курс II Форма обучения очная

БИЛЕТ № 3

- 1. Полупроводниковые диоды
- 2. Электрические схемы включения элементов в цепи переменного тока, использование закона Ома и правил Кирхгофа для расчета цепей переменного тока.
- 3. Найти эквивалентное сопротивление цепи $R_{\text{экв}}$ при: R_1 = 5 Om, R_2 = 10 Om, R_3 = 15 Om, R_3 = 15 Om, R_5 = 25 Om.

Председатель методической комиссии

Преподаватель

В.Н. Лескин

А.В.Сумец

ФГБОУ ВО «ЛУГАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ ВЛАДИМИРА ДАЛЯ»

колледж

Учебная дисциплина ОП.02 Электротехника и электроника Специальность 13.02.11 Техническая эксплуатация и обслуживание электрического и электромеханического оборудования (по отраслям) Курс II Форма обучения <u>очная</u>

БИЛЕТ № 4

- 1. Выпрямители.
- 2. Первое и второе правило Кирхгофа.
- 3. Найти эквивалентное сопротивление цепи $R_{\rm 9KB}$ при: R_1 = 40 Om, R_2 = 20 Om, R_3 = 60 Om, R = 55 Om, R_5 = 25 Om.

Председатель методической комиссии

Преподаватель

В.Н. Лескин

А.В.Сумец

колледж

Учебная дисциплина ОП.02 Электротехника и электроника Специальность 13.02.11 Техническая эксплуатация и обслуживание электрического и электромеханического оборудования (по отраслям) Курс II Форма обучения <u>очная</u>

БИЛЕТ № 5

- 1. Устройство, принцип действия и классификация машин переменного тока.
 - 2. Полупроводниковые стабилитроны.
- 3. Найти эквивалентное сопротивление цепи $R_{^{9 \text{KB}}}$ при: $R_1 = 30$ Ом, $R_2 = 50$ Ом, $R_3 = 10$ Ом, R = 25 Ом, $R_5 = 15$ Ом.

Председатель методической комиссии

Преподаватель

__В.Н. Лескин

ФГБОУ ВО «ЛУГАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ ВЛАДИМИРА ДАЛЯ»

колледж

Учебная дисциплина ОП.02 Электротехника и электроника Специальность 13.02.11 Техническая эксплуатация и обслуживание электрического и электромеханического оборудования (по отраслям) Курс II Форма обучения <u>очная</u>

БИЛЕТ № 6

- 1. Взаимная индукция и её использование в технике.
- 2. Триггеры
- 3. Найти эквивалентную ёмкость $C_{9 \text{кв}}$ смешанного соединения конденсаторов: $C_1 = 40$ мк Φ , $C_2 = 20$ мк Φ , $C_3 = 60$ мк Φ , $C_4 = 55$ мк Φ , $C_5 = 25$ мк Φ .

Председатель методической комиссии

Преподаватель

В.Н. Лескин

A.B.Cymen

колледж

Учебная дисциплина ОП.02 Электротехника и электроника Специальность 13.02.11 Техническая эксплуатация и обслуживание электрического и электромеханического оборудования (по отраслям) Курс II Форма обучения очная

БИЛЕТ № 7

- 1. Двигатели постоянного тока. Принцип действия, рабочие характеристики, кпд.
 - 2. Мультивибраторы
- 3. Найти эквивалентное сопротивление цепи R_{3KB} при: $R_1 = 25$ Ом, $R_2 = 60$ Ом, $R_3 = 100$ Ом, $R_4 = 70$ Ом, $R_5 = 30$ Ом.

Председатель методической комиссии	В.Н. Лескин
Преподаватель	А.В.Сумец

ФГБОУ ВО «ЛУГАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ ВЛАДИМИРА ДАЛЯ»

колледж

Учебная дисциплина ОП.02 Электротехника и электроника Специальность 13.02.11 Техническая эксплуатация и обслуживание электрического и электромеханического оборудования (по отраслям) Курс II Форма обучения <u>очная</u>

БИЛЕТ № 8

- 1. Виды погрешностей. Класс точности измерительных приборов.
- 2. Классификация и принцип работы усилителей.
- 3. Найти эквивалентное сопротивление цепи $R_{^{9 \text{KB}}}$ при: R_1 = 50 Om, R_2 = 45 Om, R_3 = 35 Om, R_4 = 75 Om, R_5 = 15 Om.

Председатель методической комиссии	В.Н. Лескин
Преподаватель	А.В.Сумец

колледж

Учебная дисциплина ОП.02 Электротехника и электроника Специальность 13.02.11 Техническая эксплуатация и обслуживание электрического и электромеханического оборудования (по отраслям) Курс II Форма обучения <u>очная</u>

БИЛЕТ № 9

- 1. Назначение устройство и принцип действия трансформатора.
- 2. Закон Ома для участка цепи.
- 3. Найти эквивалентную ёмкость $C_{3 \text{кв}}$ смешанного соединения конденсаторов: $C_1 = 50$ мк Φ , $C_2 = 150$ мк Φ , $C_3 = 120$ мк Φ , $C_4 = 170$ мк Φ , $C_5 = 100$ мк Φ

Председатель методической комиссии

Преподаватель

_В.Н. Лескин

ФГБОУ ВО «ЛУГАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ ВЛАДИМИРА ДАЛЯ»

колледж

Учебная дисциплина ОП.02 Электротехника и электроника Специальность 13.02.11 Техническая эксплуатация и обслуживание электрического и электромеханического оборудования (по отраслям) Курс II Форма обучения <u>очная</u>

БИЛЕТ № <u>10</u>

- 1. Классификация электрических двигателей. Вращающий момент, уравнение механического состояния.
 - 2. Закон Ампера для магнитной цепи.
- 3. Найти эквивалентную ёмкость $C_{3 \text{кв}}$ смешанного соединения конденсаторов: $C_1 = 60$ мк Φ , $C_2 = 120$ мк Φ , $C_3 = 200$ мк Φ , $C_4 = 150$ мк Φ , $C_5 = 300$ мк Φ

Председатель методической комиссии _______ В.Н. Лескин ______ Преподаватель ______ А.В.Сумец