МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Луганский государственный университет имени Владимира Даля»

Колледж Северодонецкого технологического института (филиал) ФГБОУ ВО «ЛГУ им. В. Даля»

КОМПЛЕКТ КОНТРОЛЬНО-ОЦЕНОЧНЫХ СРЕДСТВ

для проведения текущего контроля и промежуточной аттестации в форме <u>дифференцированного зачета</u> по учебной дисциплине

ОП.04 Техническая механика

по специальности 13.02.11 Техническая эксплуатация и обслуживание электрического и электромеханического оборудования (по отраслям)

РАССМОТРЕН И СОГЛАСОВАН методической комиссией Колледжа Северодонецкого технологического института (филиал) ФГБОУ ВО «ЛГУ им. В. Даля»

Протокол № <u>01</u> от «<u>13</u>» сентября_2024 г.

Председатель комиссии

В.Н. Лескин

Разработан на основе федерального государственного образовательного стандарта среднего профессионального образование по специальности

(Meming)

13.02.11 Техническая эксплуатация и обслуживание электрического и электромеханического оборудования (по отраслям)

УТВЕРЖДЕН

заместителем директора

Р.П. Филь

Составитель(и):

Сумец Андрей Викторович, преподаватель СПО Колледжа Северодонецкого технологического института (филиал) ФГБОУ «ЛГУ им. В.Даля»

1. Паспорт комплекта контрольно-оценочных средств

В результате освоения учебной дисциплины *ОП.04 Техническая механика*

обучающийся должен обладать предусмотренными ФГОС СПО по специальности 13.02.11 Техническая эксплуатация и обслуживание электрического и электромеханического оборудования (по отраслям):

- У1- определять напряжения в конструкционных элементах;
- У2-определять передаточное отношение;
- У3- производить расчеты элементов конструкций на прочность и жесткость;

знаниями (3):

- 31-виды движений и преобразующие движения механизмы;
- 3 2- виды износа и деформаций деталей и узлов;
- 33-виды передач, их устройство, назначение, преимущества и недостатки, условные обозначения на схемах;
- 34-кинематику механизмов, соединения деталей машин, механические передачи, виды и устройство передач;
- 35-методику расчета конструкций на прочность и жесткость при различных видах деформации;
- 36-назначение и классификацию подшипников;
- 37-характер соединения основных сборочных единиц и деталей;
- 38-основные типы смазочных устройств;
- 39-типы, назначение, устройство редукторов;
- 310-трение, его виды, роль трения в техникеосновы конструирования деталей и сборочных единиц

и общими компетенциями.

Код	Наименование результата обучения
OK 1.	Выбирать способы решения задач профессиональной деятельности применительно к различным контекстам
OK 2	Осуществлять поиск, анализ и интерпретацию информации, необходимой для выполнения задач профессиональной деятельности
OK 5	Осуществлять устную и письменную коммуникацию на государственном языке Российской Федерации с учетом особенностей социального и культурного контекста.
OK 9.	Использовать информационные технологии в профессиональной деятельности

ПК 1.2	Проводить диагностику и испытания электрического и электромеханического оборудования.								
ПК 2.1	Осуществлять планирование работ по эксплуатации электрического и электромеханического оборудования.								
ПК 3.1	Проводить диагностику технического состояния электрического и электромеханического оборудования энергоустановок.								
ПК3.2	Осуществлять проведение работ по техническому обслуживанию и ремонту электрического и электромеханического оборудования энергоустановок.								

Оценивание уровня освоения учебной дисциплины

Предметом оценивания служат умения и знания, предусмотренные ФГОС СПО по дисциплине *ОП.04 Техническая механика*, направленные на формирование общих и профессиональных компетенций. Промежуточная аттестация по учебной дисциплине проводится в форме дифференцированного зачета.

Контроль и оценивание уровня освоения учебной дисциплины по темам (разделам)

Таблица 1

Элемент учебной дисциплины	Формы и методы контроля										
дисциплины	Текущи	ій контроль	Промежу	гочная аттестация							
	Форма контроля	Проверяемые ОК, У, З	Форма контроля	Проверяемые ОК, У, З							
Раздел 1 . Теоретическая м	иеханика (статика, кинемат	гика, динамика)									
Тема 1.1 Основные положения статики	Практическая работа Самостоятельная работа	31, OK1. OK3, OK9									
Тема 1.2 Плоская система сходящихся сил	Практическая работа	31, 32,33, У1,У2, У4 ОК3, ОК9									
Тема 1. 3 Теория пар сил на плоскости	Устный опоре	31, 32,33 OK1. OK3, OK9									
Тема 1.4 Плоская система произвольно расположенных сил	Практическая работа	31, 32,33 OK1. OK3, OK9									
Тема 1.5 Центр тяжести	Практическая работа	31, 32,33 OK1. OK3, OK9									
Тема 1.6 Основные понятия кинематики. Кинематика точки	Практическая работа	31. OK1. OK3, OK9									

Тема. 1.7 Простейшие движения твердого тела	Устный опрос	31, OK1. OK3, OK9 OK1. OK3, OK9	
Тема 1.8 Сложное движение твердого тела	Устный опрос	331, OK1. OK3, OK9	
Тема 1.9 Основные понятия динамики.	Практическая работа	33 OK1. OK3, OK9	
Тема 1.10 Трение. Работа и мощность	Устный опрос	310 OK1. OK3, OK9	
Раздел 2. Прикладная мо	еханика		
Тема 2.1.Элементы кинематики механизмов	Устный опрос Тестирование	34 OK1. OK3, OK9	
Тема 2.2.Основные задачи структурного и кинематического исследования механизмов	Устный опрос Тестирование	33 OK1. OK3, OK9	
Раздел 3 Сопротивление м	атериалов		
Тема 3.1 Основные положения. Растяжение и сжатие	Практическая работа	32,У1,У2, У4, ОК3. ОК6, ОК9	
Тема 3.2 Расчеты на срез и смятие	Практическая работа	32,33, У1,У2, У4, ОК3, ОК9	

Тема 3.3 Геометрические характеристики плоских сечений	Устный опрос	32,У3,, ОК3. ОК6, ОК9		
Тема.3.4 Кручение	Практическая работа	35, 35, 32,У3,, ОК3. ОК6, ОК9		
Тема3.5 Изгиб	Практическая работа	35, 32,У3,, ОК3. ОК6, ОК9		
Тема 3.6 Устойчивость сжатых стержней	Устный опрос	35, 32,У3,, ОК3. ОК6, ОК9		
Раздел 4 Детали машин				
Тема 4.1. Общие сведения о деталях машин.	Устный опрос	33, У2, ОК3. ОК6, ОК9		
Тема 4.2 Передачи вращательного движения. Классификация передач	Практическая работа	3 ОК3. ОК6, ОК94. 36, У2		
Тема 4.3 Разъемные и неразъемные соединения	Устный опрос	37, У2, ОК3. ОК6, ОК9		
Тема 4.4. Подшипники	Практическая работа	36, OK3. OK6, OK9		
Тема 4.5. Редукторы	Устный опрос	39,У2, ОК3. ОК6, ОК9		
Промежуточная аттестация			ирффернццир ованный зачет	У1-У3, 31-39, ОК1,ОК2

3 Задания для оценки освоения учебной дисциплины

3.1. Задания для текущего контроля

Перечень вопросов и типовых практических заданий для подготовки к дифзачету по дисциплине *ОП.04 Техническая механика* для обучающихся по специальности *13.02.11 Техническая эксплуатация и обслуживание* электрического и электромеханического оборудования (по отраслям)

Теоретические вопросы

- 1. Что такое сила? Охарактеризуйте эту физическую величину и единицу ее измерения в системе СИ.
 - 2. Перечислите и охарактеризуйте основные аксиомы статики.
- 3. Что такое «эквивалентная», «равнодействующая» и «уравновешивающая» система сил?
- 4. Теорема о равновесии плоской системы трех непараллельных сил и ее доказательство.
- 5. В чем разница между распределенной и сосредоточенной нагрузкой? Что такое «интенсивность» плоской системы распределенных сил и в каких единицах она измеряется?
- 6. Что такое «плоская система сходящихся сил»? Определение равнодействующей плоской системы сил геометрическим и графическим методом.
- 7. Сформулируйте условия равновесия плоской системы произвольно расположенных сил.
- 8. Что такое момент силы относительно точки и в каких единицах (в системе СИ) он измеряется? Что такое момент пары сил и какие пары сил считаются эквивалентными?
- 9. Сформулируйте основные свойства пары сил в виде теорем.
- 10. Сформулируйте и докажите теорему о сложении пар сил. Сформулируйте условие равновесия плоской системы пар.
- 11. Сформулируйте и докажите теорему о приведении системы произвольно расположенных сил к данному центру. Что такое главным момент плоской системы произвольно расположенных сил?
- 12. Перечислите свойства главного вектора и главного момента системы произвольно расположенных сил.
- 13. Сформулируйте теорему о моменте равнодействующей системы сил (теорема Вариньона).
- 14. Сформулируйте три основных закона трения скольжения (законы Кулона).
- 15. Что такое коэффициент трения скольжения? От чего зависит его величина?
 - 16. Сформулируйте условия р⁸авновесия пространственной системы

произвольно расположенных сил.

- 17. Дайте определение центра тяжести тела и опишите основные методы его нахождения.
- 18. Дайте определение абсолютному и относительному движению. Что такое траектория точки?
- 19. Перечислите и охарактеризуйте способы задания движения точки.
- 20. Что такое скорость точки? Какими единицами (в системе СИ) она измеряется и какими параметрами характеризуется? Что такое средняя и истинная скорость точки?
- 21. Что такое ускорение точки? Какими единицами (в системе СИ) оно измеряется и какими параметрами характеризуется? Что такое среднее и истинное ускорение точки?
- 22. Дайте определение нормального и касательного ускорения. Сформулируйте теорему о нормальном и касательном ускорении.
- 23. Перечислите и охарактеризуйте виды движения точки в зависимости от величины ее касательного и нормального ускорения.
- 24. Дайте определение и поясните сущность поступательного, вращательного, плоскопараллельного и сложного движения твердого тела.
 - 25. Перечислите основные законы динамики и поясните их смысл.
- 26. Сформулируйте принцип независимости действия сил и поясните его смысл. Назовите две основные задачи динамики.
- 27. Сформулируйте и поясните сущность метода кинетостатики для решения задач динамики (принцип Д'Аламбера).
- 28. Что такое работа силы? Какими единицами (в системе СИ) она измеряется?
- 29. Сформулируйте теорему о работе силы тяжести и поясните ее сущность.
- 30. Что такое мощность силы? Какими единицами (в системе СИ) она измеряется?
- 31. Что такое энергия? Дайте определение и поясните сущность коэффициента полезного действия.
- 32. Сформулируйте закон сохранения механической энергии и поясните его смысл.
- 33. Перечислите основные задачи науки о сопротивлении материалов. Что такое прочность, жесткость, устойчивость?
- 34. Перечислите основные гипотезы и допущения, принимаемых в расчетах сопротивления материалов и поясните суть. Сформулируйте принцип Сен-Венана.

- 35. Перечислите основные виды нагрузок и деформаций, возникающих в процессе работы машин и сооружений.
- 36. В чем заключается метод сечений, используемый при решении задач теоретической механики и сопротивления материалов?
- 37. Какие силовые факторы могут возникать в поперечном сечении бруса и какие виды деформаций они вызывают? Что такое эпюра?
- 38. Что такое напряжение и в каких единицах оно измеряется? В чем принципиальное отличие напряжения от давления?
- 39. Сформулируйте гипотезу о независимости действия сил (принцип независимости действия сил) и поясните ее сущность. Сформулируйте закон Гука при растяжении и сжатии и поясните его смысл. Что такое модуль продольной упругости?
- 40. Опишите зависимость между продольной и поперечной деформациями при растяжении и сжатии. Что такое коэффициент Пуассона?
- 41. Сформулируйте условие прочности материалов и конструкций при растяжении и сжатии, представьте его в виде расчетной формулы. Что такое коэффициент запаса прочности?
- 42. Сформулируйте условие прочности материалов и конструкций при сдвиге, представьте его в виде расчетной формулы. Что такое срез (скалывание)?
- 43. Сформулируйте закон Гука при сдвиге и поясните его сущность. Что такое модуль упругости сдвига (модуль упругости второго рода)?
- 44. Что такое полярный момент инерции плоской фигуры? Какими единицами системы СИ он измеряется?
- 45. Что такое осевой момент инерции плоской фигуры? Какими единицами системы СИ он измеряется? Что такое центральный момент инерции?
- 46. Какие деформации и напряжения в сечениях бруса возникают при кручении? Что такое полный угол закручивания и относительный угол закручивания сечения?
- 47. Сформулируйте условие прочности бруса при кручении. Приведите расчетную формулу на прочность при кручении и поясните ее сущность.
- 48. Что такое чистый изгиб, прямой изгиб, косой изгиб? Какие напряжения возникают в поперечном сечении бруса при чистом изгибе?
- 49. Сформулируйте условие прочности балки (бруса) при изгибе. Приведите расчетную формулу и поясните ее сущность.
 - 50. Что такое продольный изгиб? Приведите формулу Эйлера для

определения величины критической силы при продольном изгибе и поясните ее сущность.

- 51. Что такое критерий работоспособности детали? Назовите основные критерии работоспособности и расчета деталей машин.
- 52. Перечислите наиболее распространенные в машиностроении типы разъемных и неразъемных соединений деталей.
- 53. Достоинства и недостатки клепаных соединений. Перечислите основные типы заклепок по форме головок. Как производится расчет на прочность клепаных соединений?
- 54. Достоинства и недостатки сварочных соединений. Виды сварки. Как производится расчет на прочность сварочных соединений?
- 55. Классификация и основные типы резьбы. Как производится расчет на прочность резьбовых соединений?
- 56. Что такое механическая передача? Классификация механических передач по принципу действия.
- 57. Основные кинематические и силовые соотношения в механических передачах. Что такое механический КПД передачи, окружная скорость, окружная сила, вращающий момент, передаточное число?
- 58. Классификация зубчатых передач. Достоинства и недостатки зубчатых передач.

59.	Основные элементы и характеристики зубчатого колеса
(1112022021111)	Her march harment man area managed to harmen authors and Haramitaning

Задания для промежуточной аттестации по дисциплине

Промежуточная аттестация проводится в форме дифференцированного зачета Билет № 1

- 1. Какой из следующих методов не применяется в Сопромате?
- 1. метод расчета конструкций на устойчивость
- 2. метод расчета конструкций на коррозийную стойкость
- 3. метод расчета конструкций нажесткость
 - 2. Что означает математическое выражение: $a < \lceil a \rceil$?
- 1. закон Гука
- 2. коэффициент запасапрочности
- 3. условие прочности
 - 3. Тело, один размер которого значительно больше двух других, называется:
- 1. оболочкой
- 2. стержнем
- 3. массивом
 - 4. Какое из зубчатых колес имеет наименьший диаметр делительной окружности:
- 1. число зубьев 25,модульзубьев 5 мм
- 2. число зубьев 35,модульзубьев 4 мм
- 3. число зубьев 28,модульзубьев 5 мм
 - 5. Допущение о сплошности материала в Сопромате позволяет:
- 1. использовать методы дифференциального и интегрального исчисления
- 2. использовать принцип независимости действия сил
- 3. считать деформации упругими
 - 6. Какова основная причина выхода из строя зубчатых передач, работающих в масле?
- 1. износ рабочей поверхности зубьев
- 2. поломка зуба
- 3. усталостное выкрашивание рабочейповерхности зубьев
 - 7. В каких случаях предпочтительнее соединение деталей не болтом, а шпилькой?
- 1. при небольшой нагрузке на соединение
- 2. при работе соединения в условиях повышенной вибрации
- 3. при частой разборке и сборке соединения
 - 8. Момент силы относительно точки это:
- 1. время воздействия силы на точку
- 2. произведение силы на расстояние от точки до линии действия силы
- 3. расстояние от вектора силы до точки в данный момент времени (мгновенное расстояние)
 - 9. Какое из утверждений выражает суть закона сохранения механической энергии:
- 1. действие равно противодействию
- 2. сумма потенциальной и кинетической энергии тела есть величина постоянная
- 3. потенциальная энергия любого тела является неизменной величиной
 - 10. Допущение об изотропности материала предполагает, что:
- 1. материал тела имеет непрерывное строение и представляет собой сплошную среду
- 2. материал тела обладает одинаковыми свойствами во всех направлениях
- 3. материал во всех точках тела обладает одинаковыми физико-механическими свойствами

№Вопроса	1	2	3	4	5	6	7	8	9	10
Ответ										

- 1. Какая из перечисленных передач не относится к ременным передачам:
- 1. шевроноременная
- 2. зубчатоременная
- 3. поликлиноременная
 - 2. Коэффициент полезного действия механической передачи это:
- 1. отношение числа оборотов ведомого вала к числу оборотов ведущего вала
- 2. отношение мощности на ведомом валу к мощности на ведущем валу
- 3. отношение крутящего момента на ведомом валу к крутящему моменту на ведущем валу
 - 3. Изменение размеров и формы тела под действием внешних сил называется
- 1. деформацией
- 2. разрушением
- 3. критическим состоянием
 - 4. Какая из перечисленных механических передач осуществляет передачу мощности за счет сил трения?
- 1. цепная передача с роликовой цепью
- 2. поликлиноременная передача
- 3. гипоидная передача
 - 5. Момент силы относительно точки это:
- 1. произведение модуля силы на расстояние от точки приложения силы до исследуемой точки
- 2. время, в течении которого сила оказывает воздействие на исследуемую точку
- 3. произведение модуля силы на расстояние от линии действия силы до точки
 - 6. Какие из перечисленных функций не могут выполнять механические передачи:
- 1. преобразовывать поступательное движение во вращательное
- 2. вырабатывать энергию для вращения исполнительных органов машины
- 3. распределять энергию двигателя между исполнительными органами машины
 - 7. Какая сила называется равнодействующей?
- 1. эквивалентная данной системе сил
- 2. уравновешивающая данную систему сил
- 3. вызывающая состояние равновесия материальной точки
 - 8. Относительная линейная деформация имеет размерность:
- $1. \text{ mm}^2$
- 2. Паскаль
- 3. безразмерная величина
 - 9. Какой формы не бывают зубья колес в конических передачах?
- 1. шевронные
- 2. спиралевидные
- 3. косые
 - 10. Материал называется изотропным, если:
- 1. материал сплошным образом заполняет пространство
- 2. напряженное состояние во всех его точках одинаково
- 3. свойства материала по всем направлениям одинаковы

№Вопроса	1	2	3	4	5	6	7	8	9	10
Ответ										

- 1. Какой угол пересечения осей валов в конических зубчатых передачах имеет наибольшее распространение?
- 1. 90°
- 2. 60°
- 3. 75°
- 2. Какое из утверждений не относится к свойствам пар сил:
- 1. силы, составляющие пару уравновешивают друг друга
- 2. пара сил не имеет равнодействующей
- 3. алгебраическая сумма проекций сил пары на ось всегда равна нулю
- 3. К недостаткам ременной передачи относится:
- 1. электроизолирующая способность
- 2. повышенные габариты
- 3. широкий диапазон межосевых расстояний
- 4. Внутренними силами в сопротивлении материалов называют:
- 1. дополнительные силы взаимодействия, возникающие между атомами тела при его деформировании
- собственный вес тела 2.
- 3. силы инерции
- 5. Какие напряжения в поперечном сечении бруса называют нормальными?
- не вызывающие критическую деформацию и разрушение бруса
- 2. направленные параллельно плоскости сечения
- 3. направленные перпендикулярно плоскости сечения
- 6. Центр тяжести площади треугольника расположен:
- 1. в точке пересечения биссектрис
- 2. в точке пересечения медиан
- 3. на равном расстоянии от вершин углов треугольника
- 7. Сколько оборотов совершит диск за 10 секунд, если его угловая скорость $m = 10n \ pad/cek$?
- 1. 20 оборотов
- 2. 50 оборотов
- 3. 100 оборотов
- 8. Пластической (остаточной) деформацией называется:
- 1. деформация, сохраняющаяся после прекращения действия нагрузки
- 2. деформация, изменяющаяся пропорционально величине нагрузки
- 3. деформация, продолжающая увеличиваться после снятия нагрузки
- 9. Какое из перечисленных разъемных соединений деталей является подвижным?
- 1. шпоночное
- 2. штифтовое
- 3. шлицевое
- 10. Как, согласно формуле Герца, изменятся контактные напряжения, если нагрузка на зубчатую передачу возрастет в четыре раза?
- возрастут в два раза
 возрастут в четыре раза
- 3. возрастут в 16 раз

№Вопроса	1	2	3	4	5	6	7	8	9	10
Ответ										

1. Закон Гука устанавливает зависимость:

- 1. между напряжениями и нагрузками
- между нагрузкой и деформацией
 между деформацией и жесткостью бруса

2. При чистом растяжении в сечениях возникают:

- 1. касательные напряжения
- 2. нормальные напряжения
- 3. касательные и нормальные напряжения

3. Прочность это:

- 1. способность противостоять деформации
- 2. способность выдерживать ударную нагрузку
- 3. способность противостоять разрушению

4. При кручении бруса вегосечениях возникают:

- 1. касательные напряжения
- 2. нормальные напряжения
- 3. вращающие напряжения

5. Абсолютно твердым в сопромате называют тело:

- 1. имеющее максимально допустимую жесткость прилюбых нагрузках
- 2. не разрушающееся при ударе или динамической нагрузке
- 3. сохраняющее расстояние междувнутреннимичастицами при нагрузке

6. Какой вид изгиба не изучает сопромат:

- 1. прямой
- 2. кривой
- 3. косой

7. Напряжение в сечениях бруса обратно пропорционально:

- 1. площади сечения
- 2. прилагаемой нагрузке
- 3. удлинению бруса

8. Сопромат изучает:

- 1. способность конструкции подвергаться коррозии
- 2. способность конструкции сохранять заданную скорость движения
- 3. способность конструкции противостоять внешнимнагрузкам

9. Работа силы тяжести не зависит:

- 1. от траектории перемещаемого тела
- 2. от высоты подъема тела над поверхностью земли
- 3. от ускорения свободного падения

10. Вариатор это механическая передача:

- 1. способная плавно изменять мощность на выходном валу привода при постоянной мощности ведущего вала
- 2. способная автоматически изменять направление вращения выходного вала по отношению к ведущему валу
- 3. способная плавно изменять частоту вращения выходного вала при неизменной частоте ведущего вала

№Вопроса	1	2	3	4	5	6	7	8	9	10
Ответ										

Какая из приведенных формул применима для определения нормального ускорения точки при криволинейном лвижении:

- 1. $a_H = 2S/t^2$
- 2. $a_H = dv/dt$
- 3. $a_H = v^2/p$
- 1. Способность материала сопротивляться деформациям называется:
- 1. надежность
- 2. прочность
- 3. жесткость
- 2. Для каких целей невозможно применить зубчатую передачу?
- 1. бесступенчатое изменение частоты вращения одного вала по сравнению с другим
- 2. дискретное изменение частоты вращения одного вала по сравнению с другим
- 3. преобразование вращательного движения в поступательное
- **3.** Какое из перечисленных свойств не относится к главным факторам, влияющим на усталостный предел выносливости детали:
- 1. абсолютные размеры детали (ее величина)
- 2. тип передачи, передающей мощность на деталь
- 3. наличие концентраторов напряжений
- **4.** Что из перечисленного можно отнести к недостаткам планетарных зубчатых передач в сравнении с обычными зубчатыми передачами:
- 1. повышенные требования к точности изготовления и сборки, большое количество деталей
- 2. повышенная нагрузка в каждом зацеплении, высокая нагрузка на валы, оси и опоры
- 3. непостоянство передаточного отношения

1. Основной энергетической характеристикой редуктора является:

- 1. передаточное число и количество ступеней
- 2. номинальный вращающий момент на тихоходном валу
- 3. удельная масса

2. К недостаткам клепаных соединений можно отнести:

- 1. стойкость к вибрации
- 2. контроль качества соединения
- 3. наличие концентраторов напряжений в соединяемых деталях
- **5.** Сколько оборотов в минуту совершает колесо автомобиля, если его угловая скорость $m = 3n \ pad/ce\kappa$?
 - 1. 30
 - 2. 90
 - 3. 180
- **6.** Величина давления в 1000 H/m^2 равнозначна:
 - 1. 1 кПа
 - 2. 1 MΠa
 - 3. 1000 мм рт столба
- 7. Что такое механический КПД передачи вращательного типа?
- 1. отношение мощности на выходном валу к мощности на входном валу
- 2. отношение величины окружной силы на поверхности выходного и входного валов
- 3. произведение крутящего момента на входном валу на передаточное отношение передачи

№Вопроса	1	2	3	4	5	6	7	8	9	10
Ответ										

1. Укажите неправильный ответ:

- 1. сила тяжести это сила, с которой Земля притягивается к телу
- 2. сила тяжести это сила, с которой тело ударяется о поверхность Земли при падении
- 3. сила тяжести это сила взаимодействия между телом и Землей
- **2.** Каково передаточное число зубчатой передачи, если угловая скорость ведущей шестерни $m_{uu} = 10n$ $pad/ce\kappa$, а угловая скорость ведомого колеса $m_{\kappa} = 4n$ $pad/ce\kappa$?
- 1. 2.5
- 2. 0.4
- 3. 40

3. При расчетах в Сопромате материал конструкций предполагается:

- 1. сплошным, однородным, изотропным и линейно упругим
- 2. прочным, жестким и упругим
- 3. не содержащим в своем объеме значительных дефектов (трещин, раковин, включений)

4. Коэффициент полезного действия (КПД) многоступенчатого привода определяется как:

- 1. отношение суммы КПД повышающих передач к сумме КПД понижающих передач
- 2. отношение частоты вращения ведущего вала привода к частоте вращения ведомого вала
- 3. произведение КПД всех передач, составляющих привод

5. Закон Гука в сопротивлении материалов устанавливает зависимость:

- 1. между силами, действующими на брус и напряжениями в каждом сечении
- 2. между величиной касательных и нормальных напряжений в нагруженном брусе
- 3. между относительным удлинением бруса и приложенными к нему продольными силами

6. Преимущества червячных передач с верхним расположением червяка по сравнению с нижним расположением червяка:

- 1. более благоприятные условия смазки
- 2. большие допускаемые окружные скорости
- 3. лучшая общая компоновка редуктора

7. Материал называется анизотропным, если:

- 1. его свойства во всех направлениях не одинаковы
- 2. он имеет кристаллическую структуру
- 3. он сплошным образом заполняет пространство

8. В какой из перечисленных передач с промежуточной гибкой связью нагрузка на валы наименьшая?

- 1. плоскоременная
- 2. клиноременная
- 3. цепная

9. Внутренние силовые факторы в поперечном сечении стержня находят с помощью:

- 1. метода нормальных сил
- 2. метода сечений
- 3. метода перемещений

10. Какой тип червяка червячной передачи во всех сечениях имеет криволинейную форму?

- 1. нелинейчатый
- 2. эвольвентный
- 3. конволютный

№Вопроса	1	2	3	4	5	6	7	8	9	10
Ответ										

- Если действующие на брус внешние нагрузки приводятся к паре сил, лежащей в плоскости, перпендикулярной оси бруса, то брус испытывает деформации:
- 1. растяжения (сжатия)
- 2. изгиба
- 3. кручения
- 2. Как элемент червячной передачи чаще всего лимитирует ее работоспособность?
- 1. червяк
- 2. червячное колесо
- червяк и колесо в равной степени
- 3. Какое из зубчатых колес имеет наименьший диаметр делительной окружности:
- 1. число зубьев 45,модуль зубьев4 мм
- 2.
- число зубьев 31,модуль зубьев6 мм число зубьев 35,модуль зубьев5 мм 3.
- 4. Какойиз перечисленных типов резьб не применяется в машиностроении:
- цилиндрическая трапецеидальная 1
- 2. цилиндрическая овальная
- 3. цилиндрическая круглая
- 5. Какое из перечисленных требований не предъявляется к материалам заклепок:
- 1. однородность с материалом соединяемых деталей (для предотвращения появления токов)
- способность изнашиваться дольше, чем материал соединяемых деталей
- одинаковый температурный коэффициент расширения с материалом соединяемых деталей
- 6. Коэффициент Пуансона определяет зависимость между:
- касательным и нормальным напряжением в поперечном сечении бруса
- критической силой и способом закрепления продольно сжимаемого стержня
- 3. продольной и поперечной деформацией тела
- 7. Что из перечисленного не относится к достоинствам резьбовых соединений:
- 1. наличие концентраторов напряжений во впадинах резьбы
- 2. высокая нагрузочная способность
- возможность применения для регулировки взаимного положения деталей
- 8. Сколько зубьев на ведущем колесе зубчатой передачи, если:
- передаточное отношение пары зубчатых колес u = 3.0;
- модуль зубьев колес m = 4 мм;

диаметр делительной окружности ведомого колеса d = 240мм.

- 1. 40
- 2. 20
- 3. 30
- 9. Устойчивостью в сопротивлении материалов называется способность элементов конструкции:
- 1. сохранять первоначальную форму равновесия при воздействии внешних нагрузок
- 2. сохранять вертикальное положение при внешних нагрузках
- 3. противостоять статическим и динамическим нагрузкам не теряя равновесия
- 10. Какие муфты не применяют в промышленном машиностроении:
- 1. глухие
- 2. слепые
- 3. зубчатые

№Вопроса	1	2	3	4	5	6	7	8	9	10
Ответ										

Какова основная причина выхода из строя открытых зубчатых передач?

- 1. износ рабочей поверхности зуба под действием сил трения
- 2. поломка или заклинивание зубьев
- 3. усталостные микротрещины на рабочих поверхностях зубьев
- 1. Две последние цифры (две первые цифры справа) на условной маркировке подшипников обозначают:
- 1. серию подшипника по ширине
- 2. диаметр отверстия внутреннего кольца подшипника
- 3. тип подшипника (шариковый радиальный, роликовый конический и т. п.)

2. Фрикционные муфты служат для:

- 1. бесступенчатого изменения мощности на ведомом валу
- 2. плавного сцепления валов под нагрузкой на ходу
- 3. реверсивного вращения ведомого вала

3. Какой из видов связей не рассматривает раздел «Теоретическая механика»:

- 1. резьбовая связь
- 2. ребро угла
- 3. гибкая связь

4. Какое из перечисленных свойств не относится к главным факторам, влияющим на усталостный предел выносливости детали:

- 1. абсолютные размеры детали (ее величина)
- 2. состояние поверхности детали
- 3. величина статической нагрузки на деталь

5. Сила трения это:

- 1. сила реакции поверхности, умноженная на коэффициент трения
- 2. разница между силой тяги и силой тяжести тела
- 3. произведение массы тела на ускорение свободного падения

6. Напряжения сдвига зависят от:

- 1. физических свойств материала бруса
- 2. площади сечения, расположенного в плоскости сдвига
- 3. величины нормальных напряжений в сечении бруса

7. Возникающие при кручении круглого бруса напряжения в поперечных сечениях зависят от:

- 1. осевого момента инерции сечения относительно продольной оси бруса
- 2. полярного момента инерции сечения относительно продольной оси бруса
- 3. свойств материала, из которого изготовлен брус

8. Какие виды изгибов не изучает наука «Сопротивление материалов»?

- 1. поперечный изгиб
- 2. косой изгиб
- 3. кривой изгиб

9. Основными критериями работоспособности подшипников качения являются:

- 1. сопротивление контактной усталости и статической контактной прочности
- 2. чистота обработки поверхности колец и сепараторов
- 3. количество тел качения (шариков, роликов) в подшипнике

№Вопроса	1	2	3	4	5	6	7	8	9	10
Ответ										

1. Гипотеза Бернулли утверждает, что:

- 1. волокна бруса не надавливают друг на друга при деформации
- 2. сечения при деформации остаются плоскими и перпендикулярными оси бруса
- 3. расстояние между сечениями бруса при деформации остается неизменным

2. При движении автомобиля мгновенная скорость точки касания колеса с дорожным покрытием равна:

- 1. произведению радиуса колеса на частоту его вращения
- 2. отношению скорости движения автомобиля к частоте вращения колеса
- 3. относительно дорожного покрытия равна нулю

3. Теорема Д. И. Журавского для изгиба устанавливает зависимость:

- 1. между силами, приложенными к брусу, и величиной прогиба бруса
- 2. между изгибающим моментом, поперечной силой и интенсивностью распределенной нагрузки
- 3. между деформацией, касательными напряжениями и нагрузкой

4. Растяжением и сжатием называют вид деформации, при которой:

- 1. в любом поперечном сечении бруса возникает только продольная сила
- 2. на всех участках бруса действуют одинаковые нормальные напряжения
- 3. касательные и нормальные напряжения в сечениях бруса равны по модулю

5. Предельным напряжением при статической нагрузке для пластичных материалов является:

- 1. предел текучести
- 2. предел усталости
- 3. пределпрочности

6. Модуль продольной упругости первого рода (модуль Юнга) определяет зависимость между:

- 1. критической силой и способом закрепления продольно сжимаемого стержня
- 2. продольной и поперечной деформацией нагруженного бруса
- 3. величиной продольных нагрузок и относительным удлинением бруса

7. Коэффициент полезного действия (КПД) многоступенчатого привода определяется как:

- 1. отношение суммы КПД повышающих передач к сумме КПД понижающих передач
- 2. произведение КПД всех передач, составляющих привод на мощность ведущего вала
- 3. произведение КПД всех передач, составляющих привод

8. Чистый изгиб имеет место, когда:

- 1. к концам однородного бруса приложены только пары сил, действующие в одной плоскости
- 2. реакции опор не влияют на величину прогиба бруса
- 3. после снятия нагрузки деформация изгиба исчезает

9. Условие работоспособности фрикционной передачи:

- 1. сила трения в зоне контакта катков должна превышать передаваемую окружную силу
- 2. сила трения в зоне контакта катков не должна превышать передаваемую окружную силу
- 3. крутящие (вращающие) моменты на ведомом и ведущем валах должны быть равными

10. Контактная прочность при сжатии цилиндрических поверхностей рассчитывается по формуле:

- 1. Гука
- 2. Герца
- 3. Эйлера

№Вопроса	1	2	3	4	5	6	7	8	9	10
Ответ										

3. Второй закон Ньютона (основное уравнение динамики) можно представить в виде формулы:

- 1. $a = \mathbf{Ee}$
- 2. $E = mc^2$
- 3. F = ma

4. Гипотеза наибольших касательных напряжений утверждает: «Опасное состояние материала наступает тогда, когда » (найдите правильное завершение утверждения):

- 1. наибольшие касательные напряжения достигают предельной величины
- 2. касательные напряжения становятся равными нормальным напряжениям
- 3. касательные напряжения становятся пропорциональными внешней нагрузке

5. Мощностью силы называется:

- 1. произведение модуля силы на ускорение точки ее приложения
- 2. работа постоянной силы на перемещение точки в пространстве
- 3. работа, совершаемая силой за единицу времени

6. Разложение силы на две составляющие сводится к построению:

- 1. треугольника сил
- 2. параллелограмма сил
- 3. равнодействующей силы

7. При динамических (переменных) нагрузках различают следующие циклы напряжений:

- 1. ударный
- 2. внезапно-повторный
- 3. асимметричный

8. Основной энергетической характеристикой редуктора является:

- 4. передаточное число и количество ступеней
- 5. номинальный вращающий момент на тихоходном валу
- 6. удельная масса

9. Основной недостаток косозубых цилиндрических передач:

- 1. повышенный нагрев зубьев колес во время работы передачи
- 2. появление дополнительных усилий на зубчатые колеса во время работы передачи
- 3. уменьшение рабочей площади контакта зубьев колеса и шестерни

10. Реакция связи криволинейная поверхность всегда направлена:

- 1. перпендикулярно касательной к точке касания телом поверхности
- 2. вдоль прямой, проходящей через центр тяжести тела
- 3. параллельно вектору силы тяжести, действующей на тело

11. Работа силы может быть определена, как:

- 1. произведение модуля силы на ускорение, которое она вызывает
- 2. произведение модуля силы на величину перемещения тела в результате действия силы
- 3. отношение потенциальной энергии тела к его массе

12. К недостаткам клепаных соединений можно отнести:

- 4. стойкость к вибрации
- 5. контроль качества соединения
- 6. наличие концентраторов напряжений в соединяемых деталях

№Вопроса	1	2	3	4	5	6	7	8	9	10
Ответ										

4 Условия проведения промежуточной аттестации

В соответствии с локальными актами и учебным планом изучение дисциплины *ОП.02 Техническая механика* завершается в форме дифзачета, а текущий контроль осуществляется преподавателями в процессе проведения практических занятий и выполнения студентами индивидуальных заданий, подготовки докладов, презентаций. Аттестуются те студенты, которые полностью выполнили объем работ.

Промежуточная аттестация освоенных умений и усвоенных знаний по дисциплине ОП.02 Техническая механика осуществляется на экзамене. Условием допуска к экзамену является положительная текущая аттестация по практическим работам дисциплины, ключевым теоретическим проводится по разработанным дисциплины. Дифзачет заданиям промежуточной аттестации. К критериям оценки уровня подготовки уровень обучающегося относятся: освоению обучающимся предусмотренного учебной программой по дисциплине. Теоретические знания при выполнении практических заданий; уровень сформированности общих компетенций; обоснованность, четкость, краткость изложения ответа при соблюдении принципа полноты его содержания.

Дополнительным критерием оценки уровня подготовки обучающегося может являться результат научно-исследовательской, проектной деятельности. Врёмя выполнения задания — 40мин.

Оборудование: справочная литература, калькулятор.

5 Критерии оценивания для промежуточной аттестации

Уровень	Показатели оценки результатов
учебных	
достижений	
«5»	Оценка «отлично» выставляется обучающемуся, проявившему
	всесторонние и глубокие знания программного материала и
	дополнительной литературы, а также творческие способности в понимании,
	изложении и практическом использовании материала
«4»	Оценка «хорошо» ставится обучающемуся, проявившему полное знание
	программного материала, освоившему основную рекомендательную
	литературу, показавшему стабильный характер знаний и умений и
	способному к их самостоятельному применению и обновлению в ходе
	последующего обучения и практической деятельности
«3»	Оценка «удовлетворительно» ставится обучающемуся, проявившему
	знания основного программного материала в объеме, необходимом для
	последующего обучения и предстоящей практической деятельности,
	знакомому с основной рекомендованной литературой, допустившему
	неточности в ответе на экзамене, но обладающему необходимыми
	знаниями и умениями для их устранения при корректировке со стороны

	экзаменатора
«2»	Оценка «неудовлетворительно» ставится обучающемуся, обнаружившему
	существенные пробелы в знании основного программного материала,
	допустившему принципиальные ошибки при применении теоретических
	знаний, которые не позволяют ему продолжить обучение или приступить к
	практической деятельности без дополнительной подготовки по данной
	дисциплине