### МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Луганский государственный университет имени Владимира Даля» (ФГБОУ ВО «ЛГУ им. В. Даля»)

Северодонецкий технологический институт Кафедра информационных технологий, приборостроения и электротехники

УТВЕРЖДАЮ:
Врио. директора СТИ (филиал)
ФГБОУ ВО «ЛГУ им. В. Даля»
Ю.В. Бородач
(подпись)
« 2024 года

## РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«Моделирование в электроэнергетике»

По направлению подготовки: 13.04.02 Электроэнергетика и электротехника

Магистерская программа «Автоматизированные электромеханические комплексы и системы»

#### Лист согласования РПУД

Рабочая программа учебной дисциплины «Моделирование в электроэнергетике» по направлению подготовки 13.04.02 Электроэнергетика и электротехника (магистерская программа «Автоматизированные электромеханические комплексы и системы») – 25 с.

Рабочая программа учебной дисциплины «Моделирование в электроэнергетике» разработана в соответствии федеральным государственным образовательным стандартом высшего образования по направлению подготовки 13.04.02 «Электроэнергетика и электротехника» утвержденный приказом Министерства науки и высшего образования Российской Федерации от 28 февраля 2018 г. № 147 (с изменениями и дополнениями в соответствии с приказами Министерства образования и науки Российской Федерации № 1456 от 26.11.2020 г., № 82 от 08.02.2021 г.).

СОСТАВИТЕЛЬ:

к.т.н., доцент Чебан В.Г.

Рабочая программа дисциплины утверждена на заседании кафедры информационных технологий, приборостроения и электротехники « 05 » сентября 2024 г., протокол № 1.

| Заведующий кафедрой ИТПЭ | В.Г. Чебан          |
|--------------------------|---------------------|
| Переутверждена: «»       | 20 г., протокол № . |

Рекомендована на заседании учебно-методической комиссии Северодонецкого технологического института (филиал) федерального государственного бюджетного образовательного учреждения высшего образования «Луганский государственный университет имени Владимира Даля» «\_16\_» \_сентября\_ 2024 г., протокол №\_1\_.

Председатель учебно-методической комиссии СТИ (филиал) ФГБОУ ВО «ЛГУ им. В.Даля»

\_\_\_ Ю.В. Бородач

<sup>©</sup> Чебан В.Г., 2024 г.

<sup>©</sup> ФГБОУ ВО «ЛГУ им. В. Даля» СТИ (филиал), 2024 г.

#### 1. Цели и задачи дисциплины

Цель изучения дисциплины – получение необходимых знаний по применению современных программных продуктов MATLAB, Simulink и SimPowerSystems при эксплуатации, проектировании и исследовании электроэнергетических систем, а также систем электроснабжения.

Задачи:

- изучить основные методы моделирования и анализа нормальных, анормальных и аварийных режимов работы объектов электроэнергетики;
- сформировать навык моделирования и анализа динамических режимов работы систем электроснабжения.

#### 2. Место дисциплины в структуре ОПОП ВО

Дисциплина «Моделирование в электроэнергетике» входит в часть, формируемую участниками образовательных отношений, дисциплин учебного плана.

Необходимыми условиями для освоения дисциплины являются:

знание возможностей программного обеспечения и вычислительной техники для решения исследовательских задач прикладного характера, особенностей системного подхода при решении задач рационального природопользования;

умения использовать системный подход при интерпретации результатов теоретических исследований;

навыки обработки информации из различных источников, в том числе с использованием современных информационных технологий.

Содержание дисциплины является логическим продолжением содержания дисциплин: программа бакалавриата или специалитета.

Служит основой для изучения следующих дисциплин: «Управление режимами работы систем электроснабжения», «Автоматизированные системы управления электроснабжением», «Специальные вопросы электроснабжения», «Переходные процессы в системах электроснабжения», «Проектирование систем электроснабжения», «Практика по получению первичных навыков научно-исследовательской работы» (учебная практика), «Научно-исследовательская работа» (производственная практика), для выполнения и защиты ВКР.

#### 3. Компетенции обучающегося, формируемые в результате освоения дисциплины

| Код и наименование компетенции                                                                                      | Индикаторы достижений компетенции (по реализуемой дисциплине)                                                                                                                                                                                                                                               | Перечень планируемых результатов                                                                                                                                                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ПК-1. Способен к организации научно- исследовательской деятельности в области (сфере) профессиональной деятельности | ПК-1.1. Владеет приемами обобщения и критической оценки результатов отечественных и зарубежных научных исследований по проблемам электро-энергетических систем и сетей ПК-1.2. Обобщает, анализирует и критически оценивает результаты отечественных и зарубежных научных исследований по вопросам электро- | Знать: приемы обобщения и критической оценки результатов отечественных и зарубежных научных исследований по проблемам электро-энергетических систем и сетей Уметь: обобщать, анализировать и критически оценивать результаты отечественных и зарубежных научных исследований по вопросам электро- |
|                                                                                                                     | энергетических систем и сетей                                                                                                                                                                                                                                                                               | энергетических систем и сетей                                                                                                                                                                                                                                                                     |

|                           | ПК-1.3. Оформляет           | Владеть: навыками            |
|---------------------------|-----------------------------|------------------------------|
|                           | результаты научно-          | оформления результатов       |
|                           | исследовательских и опытно- | научно-исследовательских и   |
|                           | конструкторских работ в     | опытно-конструкторских       |
|                           | соответствии с требованиями | работ в соответствии с       |
|                           | к нормативной документации  | требованиями к нормативной   |
|                           | в соответствующей области   | документации                 |
|                           | знаний                      |                              |
| ПК-4. Способен выполнять  | ПК-4.1. Знает нормативную   | Знать: нормативную           |
| анализ режимов работы     | документацию                | документацию                 |
| объектов профессиональной | диспетчерского центра,      | диспетчерского центра,       |
| деятельности              | определяющую порядок        | определяющую порядок         |
|                           | управления электро-         | управления электро-          |
|                           | энергетическим режимом      | энергетическим режимом       |
|                           | энергосистемы,              | энергосистемы,               |
|                           | технологическими режимами   | технологическими режимами    |
|                           | работы и эксплуатационным   | работы и эксплуатационным    |
|                           | состоянием объектов         | состоянием объектов          |
|                           | диспетчеризации             | диспетчеризации              |
|                           | ПК-4.2. Применяет в работе  | Уметь: применять в работе    |
|                           | техническую, в том числе    | техническую, в том числе     |
|                           | инструктивную и             | инструктивную и              |
|                           | оперативную документацию    | оперативную документацию     |
|                           | ПК-4.3. Владеет основными   | Владеть: методами создания   |
|                           | методами создания и анализа | и анализа моделей,           |
|                           | моделей, позволяющих        | позволяющих прогнозировать   |
|                           | прогнозировать свойства,    | свойства, поведение и режимы |
|                           | поведение и режимы работы   | работы объектов              |
|                           | объектов профессиональной   | профессиональной             |
|                           | деятельности                | деятельности                 |

# 4. Структура и содержание дисциплины

4.1. Объем учебной дисциплины и виды учебной работы

| Dur massuci nasaru                                 | Объем час   | ов (зач. ед.) |
|----------------------------------------------------|-------------|---------------|
| Вид учебной работы                                 | Очная форма | Заочная форма |
| Οδινοσ γινοδινοσ νοτηγονο (πορεο)                  | 144         | 144           |
| Общая учебная нагрузка (всего)                     | (4 зач. ед) | (4 зач. ед)   |
| Обязательная аудиторная учебная нагрузка (всего) в | 56          | 28            |
| том числе:                                         | 30          | 20            |
| Лекции                                             | 28          | 12            |
| Семинарские занятия                                | _           | _             |
| Практические занятия                               | 28          | 16            |
| Лабораторные работы                                | _           | _             |
| Курсовая работа (курсовой проект)                  | _           | _             |
| Другие формы и методы организации образовательного | _           | _             |
| процесса                                           |             |               |
| Самостоятельная работа студента (всего)            | 88          | 116           |
| Форма аттестации                                   | экзамен     | экзамен       |

#### 4.2. Содержание разделов дисциплины

#### Раздел 1. Общие вопросы моделирования.

- **Тема 1.** Основные понятия и определения. Компьютерное моделирование. Требования к математическим моделям. Классификация математических моделей.
- **Тема 2.** Основные типы задач моделирования в электроснабжении. Особенности задач моделирования в электроснабжении.
  - **Тема 3.** Основы работы с MATLAB.
  - **Тема 4.** Основы работы с Simulink.
  - **Тема 5.** Основы работы с SimPowerSystems.

# Раздел 2. Моделирование элементов и режимов работы систем электроснабжения промышленных предприятий.

- Тема 6. Математические модели базовых элементов электротехники.
- **Тема 7.** Моделирование элементов систем электроснабжения. Математическая модель линий электропередач.
  - Тема 8. Математическая модель двухобмоточного трансформатора.
  - Тема 9. Математическая модель трехобмоточного трансформатора.
  - Тема 10. Моделирование комплексной нагрузки.
- **Тема 11.** Моделирование и исследование переходного процесса в индуктивности, конденсаторе и выпрямителе.
  - Тема 12. Моделирование и исследование трансформаторной подстанции.
- **Тема 13.** Моделирование и исследование двигателя постоянного тока и асинхронного двигателя.
  - Тема 14. Моделирование и исследование асинхронного электропривода.

#### 4.3. Лекции

| No  | Название темы                                                                                             |    | 1 часов          |
|-----|-----------------------------------------------------------------------------------------------------------|----|------------------|
| п/п |                                                                                                           |    | Заочная<br>форма |
| 1   | Основные понятия и определения. Компьютерное моделирование. Требования к математическим моделям.          | 2  | _                |
|     | Классификация математических моделей.                                                                     |    |                  |
| 2   | Основные типы задач моделирования в электроснабжении. Особенности задач моделирования в электроснабжении. | 2  | _                |
| 3   | Основы работы с MATLAB.                                                                                   | 2  | 2                |
| 4   | Основы работы с Simulink.                                                                                 | 2  | 2                |
| 5   | Основы работы с SimPowerSystems.                                                                          | 2  | 2                |
| 6   | Математические модели базовых элементов электротехники.                                                   | 2  | _                |
| 7   | Моделирование элементов систем электроснабжения.<br>Математическая модель линий электропередач.           |    | _                |
| 8   | Математическая модель двухобмоточного трансформатора.                                                     | 2  | _                |
| 9   | Математическая модель трехобмоточного трансформатора.                                                     | 2  | _                |
| 10  | Моделирование комплексной нагрузки.                                                                       | 2  | _                |
| 11  | Моделирование и исследование переходного процесса в индуктивности, конденсаторе и выпрямителе.            | 2  | _                |
| 12  | Моделирование и исследование трансформаторной подстанции.                                                 | 2  | 2                |
| 13  | Молединорание и исследорание пригателя постоянного тока и                                                 |    | 2                |
| 14  | Моделирование и исследование асинхронного электропривода.                                                 | 2  | 2                |
|     | Итого:                                                                                                    | 28 | 12               |

4.4. Практические занятия

| No  | Название темы                                                                                                  |    | 1 часов          |
|-----|----------------------------------------------------------------------------------------------------------------|----|------------------|
| Л/П |                                                                                                                |    | Заочная<br>форма |
| 1   | Основы компьютерного моделирования. Требования к математическим моделям. Классификация математических моделей. | 2  | _                |
| 2   | Основные типы и особенности задач моделирования в электроснабжении.                                            | 2  | _                |
| 3   | Основы работы с MATLAB.                                                                                        | 2  | 2                |
| 4   | Основы работы с Simulink.                                                                                      | 2  | 2                |
| 5   | Основы работы с SimPowerSystems.                                                                               | 2  | 2                |
| 6   | Математические модели базовых элементов электротехники.                                                        | 2  | _                |
| 7   | Математическая модель линий электропередач.                                                                    | 2  | _                |
| 8   | Математическая модель двухобмоточного трансформатора.                                                          | 2  | _                |
| 9   | Математическая модель трехобмоточного трансформатора.                                                          | 2  |                  |
| 10  | Моделирование комплексной нагрузки.                                                                            | 2  | 2                |
| 11  | Моделирование и исследование переходного процесса в индуктивности, конденсаторе и выпрямителе.                 | 2  | 2                |
| 12  | Моделирование и исследование трансформаторной подстанции.                                                      | 2  | 2                |
| 13  | Моданирования и исследования пригодаля постоянного тока и                                                      |    | 2                |
| 14  | Моделирование и исследование асинхронного электропривода.                                                      | 2  | 2                |
|     | Итого:                                                                                                         | 28 | 16               |

**4.5 ..Лабораторные работы** Лабораторные работы не предусмотрены учебным планом

4.6 Самостоятельная работа студентов

| No.      |                                                                                                                                                                                               |                                                                     | Объем часов    |                  |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------|------------------|
| №<br>п/п | Название темы Кил СРС                                                                                                                                                                         |                                                                     | Очная<br>форма | Заочная<br>форма |
| 1        | Компьютерное моделирование. Требования к математическим моделям. Классификация математических моделей.                                                                                        | Изучение лекционного материала. Подготовка к практическим занятиям. | 6              | 8                |
| 2        | Основные типы задач моделирования в электроснабжении. Особенности задач моделирования в электроснабжении.                                                                                     | Изучение лекционного материала. Подготовка к практическим занятиям. | 6              | 8                |
| 3        | Основы работы с прикладными программами MATLAB, Simulink, SimPowerSystems.                                                                                                                    | Изучение лекционного материала. Подготовка к практическим занятиям. | 13             | 17               |
| 4        | Математические модели<br>базовых элементов<br>олектротехники.<br>Математическая модель линий<br>олектропередач.<br>Изучение лекционного<br>материала.<br>Подготовка к практическ<br>занятиям. |                                                                     | 6              | 8                |

| 5  | Математическая модель двухобмоточного и трехобмоточного трансформаторов.                                                                                                                                | Изучение лекционного материала. Подготовка к практическим занятиям. | 6  | 8   |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----|-----|
| 6  | Моделирование комплексной нагрузки. Моделирование и исследование переходного процесса в индуктивности, конденсаторе и выпрямителе.  Изучение лекционного материала. Подготовка к практическим занятиям. |                                                                     | 6  | 10  |
| 7  | Моделирование и исследование трансформаторной подстанции.                                                                                                                                               | Изучение лекционного материала. Подготовка к практическим занятиям. | 6  | 10  |
| 8  | Моделирование и исследование двигателя постоянного тока и асинхронного двигателя.                                                                                                                       | Изучение лекционного материала. Подготовка к практическим занятиям. | 6  | 10  |
| 9  | Моделирование и исследование асинхронного электропривода.                                                                                                                                               | Изучение лекционного материала. Подготовка к практическим занятиям. | 6  | 10  |
| 10 | Подготовка к экзамену.                                                                                                                                                                                  | Проработка изученного материала                                     | 27 | 27  |
|    | Итого:                                                                                                                                                                                                  |                                                                     | 88 | 116 |

#### 4.7. Курсовые работы/проекты по дисциплине

Курсовые работы/проекты не предусмотрены учебным планом

#### 5. Образовательные технологии

В процессе обучения для достижения планируемых результатов освоения дисциплины используются следующие образовательные технологии:

- традиционные объяснительно-иллюстративные технологии, которые обеспечивают доступность учебного материала для большинства студентов, системность, отработанность организационных форм и привычных методов, относительно малые затраты времени;
- информационно-коммуникационная технология, в том числе визуализация, создание электронных учебных материалов;
- использование электронных образовательных ресурсов при подготовке к лекциям, практическим и лабораторным занятиям;
- технология проблемного обучения, в том числе в рамках разбора проблемных ситуаций;
- технология развивающего обучения, в том числе постановка и решение задач от менее сложных к более сложным, развивающих компетенции студентов.

В рамках перечисленных технологий основными методами обучения являются: работа в команде, самостоятельная работа, проблемное обучение.

#### 6. Учебно-методическое и информационное обеспечение дисциплины

#### а) Основная литература:

1. Голубева, Н. . Математическое моделирование систем и процессов : учебное пособие для вузов / Н.В. Голубева. — 4-е изд., испр. и доп. — Санкт-Петербург : Лань, 2024. — 244 с. — Текст: электронный // Лань : электронно-библиотечная система [сайт]. — URL:

https://e.lanbook.com/book/393023?category=917 – Режим доступа: для авториз. пользователей.

2. Петров, А.В. Моделирование процессов и систем: учебное пособие / А.В. Петров. — Санкт- Петербург: Лань, 2022. — 288 с. — Текст: электронный // Лань: электронно-библиотечная система [сайт]. — URL: <a href="https://e.lanbook.com/book/212213?category=1537&publisher">https://e.lanbook.com/book/212213?category=1537&publisher</a> — Режим доступа: для авториз. пользователей.

#### б) Дополнительная литература:

- 1. Обухов, С.Г. Математическое моделирование в системах электроснабжения: учебное пособие / С.Г. Обухов. Томский политехнический университет. Томск: Изд-во Томского политехнического университета, 2014 84 с. Текст: электронный // Корпоративный портал Томский политех : электронно-библиотечная система [сайт]. URL: <a href="https://portal.tpu.ru/SHARED/s/SEROB/uchebrab3/Tab/UP.pdf">https://portal.tpu.ru/SHARED/s/SEROB/uchebrab3/Tab/UP.pdf</a> Режим доступа: свободный.
- 2. Любченко, В.Я. Применение математического моделирования в задачах электроэнергетики: учебное пособие / В.Я. Любченко, С.В. Родыгина. Новосибирск Изд-во НГТУ, 2018 72 с. Текст: электронный // Научно-техническая библиотека КузГТУ: электронно-библиотечная система [сайт]. URL: <a href="http://ruslan-wildfly.kuzstu.ru/pwb/detail?db=CAT&id=vtls000145036">http://ruslan-wildfly.kuzstu.ru/pwb/detail?db=CAT&id=vtls000145036</a> Режим доступа: свободный.
- 3. Моделирование в электроэнергетике : учебное пособие / А.Ф. Шаталов, И.Н. Воротников, М.А. Мастепаненко и др. ; Ставропольский государственный аграрный университет. Ставрополь : Агрус, 2014. 140 с. Текст: электронный // Университетская библиотека ONLINE [сайт]. URL: <a href="https://biblioclub.ru/index.php?page=book&id=277510">https://biblioclub.ru/index.php?page=book&id=277510</a> Режим доступа: по подписке.

#### в) методические указания:

1. Исследование и моделирование электроэнергетических систем : методические указания / Л.А. Влацкая, Н.Г. Семенова; Оренбургский гос. ун-т. — Оренбург, 2018. — 40 с. Текст: электронный // Открытая электронная библиотека научно-образовательных ресурсов Оренбуржья [сайт]. — URL: <a href="http://elib.osu.ru/bitstream/123456789/14563/1/%d0%92%d0%bb%d0%b0%d1%86%d0%ba%d0%b0%d0%b6%d0%b8%d0%b8%d1%81%d1%81%d0%bb%d0%b5%d0%b4%d0%be%d0%b2%d0%b0%d0%b0%d0%b6%d0%b8%d0%b5.pdf">http://elib.osu.ru/bitstream/123456789/14563/1/%d0%92%d0%bb%d0%b6%d0%b6%d0%b6%d0%b6%d0%b0%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d0%b6%d

#### г) Интернет-ресурсы:

- 1. Министерство образования и науки Российской Федерации http://минобрнауки.pф
- 2. Министерства природных ресурсов и экологии Российской Федерации <a href="http://www.mnr.gov.ru">http://www.mnr.gov.ru</a>
  - 3. Федеральная служба по надзору в сфере образования и науки <a href="http://obrnadzor.gov.ru">http://obrnadzor.gov.ru</a>
- 4. Министерство образования и науки Луганской Народной Республики <a href="https://minobr.su">https://minobr.su</a>
- 5. Министерство природных ресурсов и экологической безопасности ЛНР https://www.mprlnr.su
  - 6. Народный совет Луганской Народной Республики <a href="https://nslnr.su">https://nslnr.su</a>
- 7. Портал Федеральных государственных образовательных стандартов высшего образования <a href="http://fgosvo.ru">http://fgosvo.ru</a>
  - 8. Федеральный портал «Российское образование» http://www.edu.ru
- 9. Информационная система «Единое окно доступа к образовательным ресурсам» http://window.edu.ru
  - 10. Федеральный центр информационно-образовательных ресурсов http://fcior.edu.ru

Электронные библиотечные системы и ресурсы:

- 1. Электронно-библиотечная система «Консультант студента» http://www.studentlibrary.ru/cgi-bin/mb4x
  - 2. Электронно-библиотечная система «StudMed.ru» <a href="https://www.studmed.ru">https://www.studmed.ru</a>
  - 3. Научная электронная библиотека eLIBRARI.RU» <a href="http://elibrary.ru">http://elibrary.ru</a>
  - 4. ЭБС Издательства «ЛАНЬ» <a href="https://e.lanbook.com">https://e.lanbook.com</a>

Информационный ресурс библиотеки образовательной организации

1. Научная библиотека имени А. Н. Коняева – <a href="http://biblio.dahluniver.ru">http://biblio.dahluniver.ru</a>

### 7. Материально-техническое и программное обеспечение дисциплины

Освоение дисциплины «Моделирование в электроэнергетике» предполагает использование академических аудиторий, соответствующих действующим санитарным и противопожарным нормам и правилам. Лекционные и практические занятия могут проводиться в компьютерном классе (компьютеры с доступом в Интернет, предназначенные для работы в электронной образовательной среде) или с применением презентационной техники (проектор, экран, компьютер).

Рабочее место преподавателя, оснащенное компьютером с доступом в Интернет.

Программное обеспечение:

| программное оосе                                                           | Бесплатное                               |                                                                                                    |  |
|----------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------|--|
| Функциональное<br>назначение                                               | программное<br>обеспечение               | Ссылки                                                                                             |  |
| Офисный пакет                                                              | Libre Office 6.3.1                       | https://www.libreoffice.org/<br>https://ru.wikipedia.org/wiki/LibreOffice                          |  |
| Операционная система                                                       | UBUNTU 19.04                             | https://ubuntu.com/<br>https://ru.wikipedia.org/wiki/Ubuntu                                        |  |
| Браузер                                                                    | Firefox Mozilla                          | http://www.mozilla.org/ru/firefox/fx                                                               |  |
| Браузер                                                                    | Opera                                    | http://www.opera.com                                                                               |  |
| Почтовый клиент                                                            | Mozilla Thunderbird                      | http://www.mozilla.org/ru/thunderbird                                                              |  |
| Файл-менеджер                                                              | Far Manager                              | http://www.farmanager.com/download.php                                                             |  |
| Архиватор                                                                  | 7Zip                                     | http://www.7-zip.org/                                                                              |  |
| Графический редактор                                                       | GIMP (GNU Image<br>Manipulation Program) | http://www.gimp.org/<br>http://gimp.ru/viewpage.php?page_id=8<br>http://ru.wikipedia.org/wiki/GIMP |  |
| Редактор PDF                                                               | PDFCreator                               | http://www.pdfforge.org/pdfcreator                                                                 |  |
| Аудиоплеер                                                                 | VLC                                      | http://www.videolan.org/vlc/                                                                       |  |
| Прикладная программа для моделирования устройств и систем                  | MATLAB R2024a                            | https://www.mathworks.com                                                                          |  |
| Прикладная программа для моделирования электрических энергетических систем | SimPowerSystems                          | https://www.mathworks.com                                                                          |  |

# 8. Фонд оценочных средств для проведения текущего контроля и промежуточной аттестации по дисциплине

### Паспорт оценочных средств по учебной дисциплине «Моделирование в электроэнергетике»

Перечень компетенций, формируемых в результате освоения учебной дисциплины

|     | Перечень ко | мпетенции, формиру |                    | своения учебнои дисі |              |
|-----|-------------|--------------------|--------------------|----------------------|--------------|
|     | T.0         | Формулировка       | Индикаторы         |                      | Этапы        |
| No  | Код         | контролируемой     | достижений         | Темы учебной         | формирования |
| п/п | компетенции | компетенции        | компетенции        | дисциплины           | (семестр     |
|     |             |                    | (по дисциплине)    |                      | изучения)    |
| 1   | ПК-1        | Способен к         | ПК-1.1. Владеет    | Тема 1. Основные     | 1            |
|     |             | организации        | приемами           | понятия и определе-  |              |
|     |             | научно-            | обобщения и        | ния. Компьютерное    |              |
|     |             | исследовательской  | критической        | моделирование.       |              |
|     |             | деятельности в     | оценки результатов | Требования к         |              |
|     |             | области (сфере)    | отечественных и    | математическим       |              |
|     |             | профессиональной   | зарубежных         | моделям.             |              |
|     |             | деятельности       | научных            | Классификация        |              |
|     |             |                    | исследований по    | математических       |              |
|     |             |                    | проблемам          | моделей.             |              |
|     |             |                    | электро-           | Тема 2. Основные     | 1            |
|     |             |                    | энергетических     | типы задач           |              |
|     |             |                    | систем и сетей     | моделирования в      |              |
|     |             |                    | ПК-1.2. Обобщает,  | электроснабжении.    |              |
|     |             |                    | анализирует и      | Особенности задач    |              |
|     |             |                    | критически         | моделирования в      |              |
|     |             |                    | оценивает          | электроснабжении.    |              |
|     |             |                    | результаты         | Тема 3. Основы       | 1            |
|     |             |                    | отечественных и    | работы с MATLAB.     |              |
|     |             |                    | зарубежных         | Тема 4. Основы       | 1            |
|     |             |                    | научных            | работы с Simulink.   |              |
|     |             |                    | исследований по    | Тема 5. Основы       | 1            |
|     |             |                    | вопросам электро-  | работы с             |              |
|     |             |                    | энергетических     | SimPowerSystems.     |              |
|     |             |                    | систем и сетей     | Тема 6. Математи-    | 1            |
|     |             |                    | ПК-1.3. Оформляет  | ческие модели        |              |
|     |             |                    | результаты научно- | базовых элементов    |              |
|     |             |                    |                    | электротехники.      |              |
|     |             |                    | и опытно-          | Тема 7.              | 1            |
|     |             |                    | конструкторских    | Моделирование        |              |
|     |             |                    | работ в            | элементов систем     |              |
|     |             |                    | соответствии с     | электроснабжения.    |              |
|     |             |                    | требованиями к     | Математическая       |              |
|     |             |                    | нормативной        | модель линий         |              |
|     |             |                    | документации в     | электропередач.      |              |
|     |             |                    | соответствующей    | Тема 8. Математи-    | 1            |
|     |             |                    | области знаний     | ческая модель        |              |
|     |             |                    |                    | двухобмоточного      |              |
|     |             |                    |                    | трансформатора.      |              |
|     |             |                    |                    |                      |              |
|     |             |                    |                    |                      |              |

|   |      |                  | 1                   | T 0.3.6             | 4 |
|---|------|------------------|---------------------|---------------------|---|
|   |      |                  |                     | Тема 9. Математи-   | 1 |
|   |      |                  |                     | ческая модель       |   |
|   |      |                  |                     | трехобмоточного     |   |
|   |      |                  |                     | трансформатора.     |   |
|   |      |                  |                     | Тема 10.            | 1 |
|   |      |                  |                     | Моделирование       |   |
|   |      |                  |                     | комплексной         |   |
|   |      |                  |                     | нагрузки.           |   |
|   |      |                  |                     | Тема 11.            | 1 |
|   |      |                  |                     | Моделирование и     |   |
|   |      |                  |                     | исследование        |   |
|   |      |                  |                     | переходного         |   |
|   |      |                  |                     | процесса в          |   |
|   |      |                  |                     | индуктивности,      |   |
|   |      |                  |                     | конденсаторе и      |   |
|   |      |                  |                     | выпрямителе.        |   |
|   |      |                  |                     | Тема 12.            | 1 |
|   |      |                  |                     | Моделирование и     | - |
|   |      |                  |                     | исследование        |   |
|   |      |                  |                     | трансформаторной    |   |
|   |      |                  |                     | подстанции.         |   |
|   |      |                  |                     | Тема 13.            | 1 |
|   |      |                  |                     |                     | 1 |
|   |      |                  |                     | Моделирование и     |   |
|   |      |                  |                     | исследование        |   |
|   |      |                  |                     | двигателя           |   |
|   |      |                  |                     | постоянного тока и  |   |
|   |      |                  |                     | асинхронного        |   |
|   |      |                  |                     | двигателя.          | 1 |
|   |      |                  |                     | Тема 14.            | 1 |
|   |      |                  |                     | Моделирование и     |   |
|   |      |                  |                     | исследование        |   |
|   |      |                  |                     | асинхронного        |   |
|   |      |                  |                     | электропривода.     |   |
| 2 | ПК-4 | Способен         | ПК-4.1. Знает       | Тема 1. Основные    | 1 |
|   |      | выполнять анализ | нормативную         | понятия и определе- |   |
|   |      | режимов работы   | документацию        | ния. Компьютерное   |   |
|   |      | объектов         | диспетчерского      | моделирование.      |   |
|   |      |                  | центра,             | Требования к        |   |
|   |      | деятельности     | определяющую        | математическим      |   |
|   |      |                  | порядок             | моделям.            |   |
|   |      |                  | управления          | Классификация       |   |
|   |      |                  | электро-            | математических      |   |
|   |      |                  | энергетическим      | моделей.            |   |
|   |      |                  | режимом             | Тема 2. Основные    | 1 |
|   |      |                  | энергосистемы,      | типы задач          |   |
|   |      |                  | технологическими    | моделирования в     |   |
|   |      |                  | режимами работы     | электроснабжении.   |   |
|   |      |                  | И                   | Особенности задач   |   |
|   |      |                  | эксплуатационным    | моделирования в     |   |
|   |      |                  | состоянием          | электроснабжении.   |   |
|   |      |                  | объектов            | Тема 3. Основы      | 1 |
|   |      |                  | диспетчеризации     | работы с MATLAB.    | _ |
|   |      | 1                | <u>r</u> . <u>1</u> | T o o in            |   |

|       | ПК-4.2. Применяет  | Тема 4. Основы     | 1 |
|-------|--------------------|--------------------|---|
|       | в работе           | работы с Simulink. | • |
|       | техническую, в том | 1                  | 1 |
|       | числе              | работы с           | 1 |
|       | инструктивную и    | SimPowerSystems.   |   |
|       | оперативную        | Тема 6. Математи-  | 1 |
|       | документацию       |                    | 1 |
|       | ПК-4.3. Владеет    | ческие модели      |   |
|       |                    | базовых элементов  |   |
|       | основными          | электротехники.    | 1 |
|       | методами создания  |                    | 1 |
|       |                    | Моделирование      |   |
|       | позволяющих        | элементов систем   |   |
|       | прогнозировать     | электроснабжения.  |   |
|       | свойства,          | Математическая     |   |
|       | поведение и        | модель линий       |   |
|       | режимы работы      | электропередач.    |   |
|       | объектов           | Тема 8. Математи-  | 1 |
|       | профессиональной   | ческая модель      |   |
|       | деятельности       | двухобмоточного    |   |
|       |                    | трансформатора.    |   |
|       |                    | Тема 9. Математи-  | 1 |
|       |                    | ческая модель      |   |
|       |                    | трехобмоточного    |   |
|       |                    | трансформатора.    |   |
|       |                    | Тема 10. Моделиро- | 1 |
|       |                    | вание комплексной  | _ |
|       |                    | нагрузки.          |   |
|       |                    | Тема 11.           | 1 |
|       |                    | Моделирование и    | 1 |
|       |                    | исследование       |   |
|       |                    | переходного        |   |
|       |                    | •                  |   |
|       |                    | процесса в         |   |
|       |                    | индуктивности,     |   |
|       |                    | конденсаторе и     |   |
|       |                    | выпрямителе.       | 1 |
|       |                    | Тема 12.           | 1 |
|       |                    | Моделирование и    |   |
|       |                    | исследование       |   |
|       |                    | трансформаторной   |   |
|       |                    | подстанции.        |   |
|       |                    | Тема 13.           | 1 |
|       |                    | Моделирование и    |   |
|       |                    | исследование       |   |
|       |                    | двигателя          |   |
|       |                    | постоянного тока и |   |
|       |                    | асинхронного       |   |
|       |                    | двигателя.         |   |
|       |                    | Тема 14.           | 1 |
|       |                    | Моделирование и    |   |
|       |                    | исследование       |   |
|       |                    | асинхронного       |   |
|       |                    | электропривода.    |   |
| <br>1 | <u> </u>           | LL                 |   |

# Показатели и критерии оценивания компетенций, описание шкал оценивания

| №<br>п/п | Код<br>компетенции | Индикаторы<br>достижений<br>компетенции | Планируемые результаты обучения по дисциплине | Контролируемые темы учебной дисциплины | Наименование<br>оценочного<br>средства |
|----------|--------------------|-----------------------------------------|-----------------------------------------------|----------------------------------------|----------------------------------------|
| 1        | ПК-1               | ПК-1.1. Владеет                         | Знать: приемы                                 | Тема 1.                                | Вопросы для                            |
|          |                    | приемами                                | обобщения и                                   | Тема 2.                                | контроля                               |
|          |                    | обобщения и                             | критической                                   | Тема 3.                                | усвоения                               |
|          |                    | критической оценки                      | оценки результатов                            | Тема 4.                                | теоретического                         |
|          |                    | результатов                             | отечественных и                               | Тема 5.                                | материала,                             |
|          |                    | отечественных и                         | зарубежных                                    | Тема 6.                                | тестовые                               |
|          |                    | зарубежных научных                      | научных                                       | Тема 7.                                | задания,                               |
|          |                    | исследований по                         | исследований по                               | Тема 8.                                | выполнение                             |
|          |                    | проблемам электро-                      | проблемам электро-                            | Тема 9.                                | задания на                             |
|          |                    | энергетических                          | энергетических                                | Тема 10.                               | практических                           |
|          |                    | систем и сетей                          | систем и сетей                                | Тема 11.                               | занятиях                               |
|          |                    | ПК-1.2. Обобщает,                       | Уметь: обобщать,                              | Тема 12.                               |                                        |
|          |                    | анализирует и                           | анализировать и                               | Тема 13.                               |                                        |
|          |                    | критически                              | критически                                    | Тема 14.                               |                                        |
|          |                    | оценивает                               | оценивать                                     |                                        |                                        |
|          |                    | результаты                              | результаты                                    |                                        |                                        |
|          |                    | отечественных и                         | отечественных и                               |                                        |                                        |
|          |                    | зарубежных научных                      | зарубежных                                    |                                        |                                        |
|          |                    | исследований по                         | научных                                       |                                        |                                        |
|          |                    | вопросам электро-                       | исследований по                               |                                        |                                        |
|          |                    | энергетических                          | вопросам электро-                             |                                        |                                        |
|          |                    | систем и сетей                          | энергетических                                |                                        |                                        |
|          |                    | ПК-1.3. Оформляет                       | систем и сетей                                |                                        |                                        |
|          |                    | результаты научно-                      | Владеть: навыками                             |                                        |                                        |
|          |                    | исследовательских и                     | оформления                                    |                                        |                                        |
|          |                    | опытно-                                 | результатов                                   |                                        |                                        |
|          |                    | конструкторских                         | научно-                                       |                                        |                                        |
|          |                    | работ в соответствии                    | исследовательских                             |                                        |                                        |
|          |                    | с требованиями к                        | и опытно-                                     |                                        |                                        |
|          |                    | нормативной                             | конструкторских                               |                                        |                                        |
|          |                    | документации в                          | работ в                                       |                                        |                                        |
|          |                    | соответствующей                         | соответствии с                                |                                        |                                        |
|          |                    | области знаний                          | требованиями к                                |                                        |                                        |
|          |                    |                                         | нормативной                                   |                                        |                                        |
|          |                    |                                         | документации                                  |                                        |                                        |

| 2 | ПК-4 | ПК-4.1. Знает       | Знать:             | Тема 1.  | Вопросы для    |
|---|------|---------------------|--------------------|----------|----------------|
|   |      | нормативную         | нормативную        | Тема 2.  | контроля       |
|   |      | документацию        | документацию       | Тема 3.  | усвоения       |
|   |      | диспетчерского      | диспетчерского     | Тема 4.  | теоретического |
|   |      | центра,             | центра,            | Тема 5.  | материала,     |
|   |      | определяющую        | определяющую       | Тема 6.  | тестовые       |
|   |      | порядок управления  | порядок            | Тема 7.  | задания,       |
|   |      | электро-            | управления         | Тема 8.  | выполнение     |
|   |      | энергетическим      | электро-           | Тема 9.  | задания на     |
|   |      | режимом             | энергетическим     | Тема 10. | практических   |
|   |      | энергосистемы,      | режимом            | Тема 11. | занятиях       |
|   |      | технологическими    | энергосистемы,     | Тема 12. |                |
|   |      | режимами работы и   | технологическими   | Тема 13. |                |
|   |      | эксплуатационным    | режимами работы и  | Тема 14. |                |
|   |      | состоянием объектов | эксплуатационным   |          |                |
|   |      | диспетчеризации     | состоянием         |          |                |
|   |      | ПК-4.2. Применяет в | объектов           |          |                |
|   |      | работе техническую, | диспетчеризации    |          |                |
|   |      | в том числе         | Уметь: применять   |          |                |
|   |      | инструктивную и     | в работе           |          |                |
|   |      | оперативную         | техническую, в том |          |                |
|   |      | документацию        | числе              |          |                |
|   |      | ПК-4.3. Владеет     | инструктивную и    |          |                |
|   |      | основными           | оперативную        |          |                |
|   |      | методами создания и | документацию       |          |                |
|   |      | анализа моделей,    | Владеть: методами  |          |                |
|   |      | позволяющих         | создания и анализа |          |                |
|   |      | прогнозировать      | моделей,           |          |                |
|   |      | свойства, поведение | позволяющих        |          |                |
|   |      | и режимы работы     | прогнозировать     |          |                |
|   |      | объектов            | свойства,          |          |                |
|   |      | профессиональной    | поведение и        |          |                |
|   |      | деятельности        | режимы работы      |          |                |
|   |      |                     | объектов           |          |                |
|   |      |                     | профессиональной   |          |                |
|   |      |                     | деятельности       |          |                |

#### 8.1. Тестовые задания

(низкий уровень)

- 1. В чем заключается сущность процесса моделирования?
- а) это замещение одного объекта (оригинала) другим (моделью) и фиксация или изучение свойств оригинала путем исследования свойств модели;
  - б) моделирование это процесс физического познания реальной системы;
- в) моделирование это процесс описания реальной системы с использованием средств вычислительной техники;
  - г) моделирование это познание физических процессов.
  - 2. Что понимается под объектом-оригиналом?
  - а) компьютерная технология;
  - б) это воображаемая система;
- в) объектом-оригиналом может быть естественная и искусственная, реальная или воображаемая система;
  - г) это реальные процессы.

- 3. Что понимается под математической моделью?
- а) математическая модель это описание реального объекта с помощью дифференциальных уравнений;
  - б) математическая модель это модель, разработанная математиком;
- в) представление изучаемого явления, процесса или объекта с помощью математических соотношений и формул;
  - г) математическая модель это описание объекта с помощью систем уравнений.
  - 4. С чего начинается процесс моделирования?
  - а) процесс моделирования начинается с разработки программы;
  - б) процесс моделирования начинается с формализации объекта;
  - в) моделирование начинается с выбора средств моделирования;
  - г) правильных ответов нет.
  - 5. Численное исследование модели дает
  - а) возможность определять разнообразные характеристики процессов;
- б) оптимизировать конструкции или режимы функционирования проектируемых устройств;
  - в) исследовать объект;
  - г) верно первое и второе утверждение.
  - 6. Что собой представляет теория моделирования?
  - а) это теория разработки моделей;
- б) это взаимосвязанная совокупность положений, определений, методов и средств создания и изучения моделей;
  - в) совокупность методов создания моделей;
- г) теория замещения одних объектов (оригиналов) другими объектами (моделями) и исследования свойств объектов на их моделях;
  - д) нет правильного ответа.
  - 7. Пакет ELCUT служит для моделирования
  - а) электрического поля;
  - б) поля постоянного тока;
  - в) температурного поля;
  - г) верны все высказывания;
  - д) нет правильного ответа.
  - 8. Электростатическое поле описывается уравнениями
  - а) ОДУ;
  - б) гиперболического типа;
  - в) эллиптического типа;
  - г) линейными;
  - д) нет правильного ответа.
  - 9. Что понимается под предметом теории моделирования?
  - а) модели реальных объектов или систем;
- б) совокупность положений определений, методов или средств моделирования и сами модели;
  - в) программные средства для разработки моделей;
  - г) методы теории моделирования;
  - 10. Какие модели вы знаете?
  - а) физическая, масштабная, географическая, математическая, химическая;
  - б) математическая, имитационная, оптимизационная, масштабная, аналоговая;
  - в) физическая, аналоговая, математическая, абстрактная, вычислительная;
  - г) физические, математические, социальные.
  - 11. Какие методы используются для исследования математической модели?
  - а) аналитические, численные, дифференциальные, графические;
  - б) аналитические, имитационные, визуальные, графические;

- в) аналитические, численные, имитационные, качественные;
- г) интегральные и асимптотические.
- 12. В каких двух случаях мы сталкиваемся с проблемой моделирования?
- а) в процессах познания и управления;
- б) в процессах прогнозирования и анализа;
- в) в процессах наблюдения и алгоритмизации;
- г) в производственных процессах и явлениях.
- 13. Что понимается под управлением в теории моделирования?
- а) процесс достижения целевого состояния;
- б) процесс целенаправленного воздействия на объект;
- в) процесс создания управляющего устройства;
- г) управление эта корректировка и настройка параметров объекта.
- 14. Какие типы объектов Вы знаете?
- а) статический, динамический, стохастический, детерминированный, линейный, нелинейный;
- б) статический, динамический, детерминированный, стохастический, нелинейный, идентификационный;
  - в) динамический, статический, имитационный, стохастический, линейный, нелинейный;
  - г) правильных ответов нет.
  - 15.В какой программе можно моделировать электрическое поле?
  - a) \*FEMM;
  - б) Microcap;
  - в) Word;
  - г) Exel.
  - 16. Что представляет собой модель любой типовой технологической операции?
- а) это система дифференциальных и алгебраических уравнений с заданными начальными условиями;
  - б) дифференциальное уравнение;
  - в) блок-схема;
  - г) граф состояний.
  - 17. Что понимается под технологией моделирования?
  - а) строго определенная последовательность этапов исследования модели;
  - б) расчет значений параметров системы;
  - в) взгляд разработчика на математическую модель;
  - г) совокупность математических зависимостей.
  - 18. Модель это...
  - а) структура системы;
- б) объект-заместитель объекта-оригинала, обеспечивающий изучение некоторых свойств оригинала;
  - в) алгоритм функционирования;
  - г) описание объекта.
  - 19. Что понимается под имитационным моделированием?
  - а) расчет характеристик системы по заданному набору аналитических зависимостей.
  - б) проведение экспериментов с математической моделью;
  - в) искусственный вероятностный процесс для решения поставленной задачи;
  - г) дискретно-событийное детерминированное представление исследуемого процесса.
  - 20. Какой тип математических моделей использует алгоритмы?
  - а) аналитические;
  - б) знаковые;
  - в) имитационные;
  - г) детерминированные.

Критерии и шкала оценивания по оценочному средству «Тестовые задания»

| Шкала оценивания        | Критерий оценивания           |  |
|-------------------------|-------------------------------|--|
| 5 (отлично)             | 85 – 100% правильных ответов  |  |
| 4 (хорошо)              | 71 – 85% правильных ответов   |  |
| 3 (удовлетворительно)   | 61 – 70% правильных ответов   |  |
| 2 (неудовлетворительно) | 60% правильных ответов и ниже |  |

# **8.2.** Вопросы для контроля усвоения теоретического материала (средний уровень)

- 1. Из каких элементов состоит схема замещения ЛЭП, какова их физическая сущность?
- 2. В чем состоит основное отличие схем замещения ЛЭП городских электрических сетей от схем замещения ЛЭП районных электрических сетей?
  - 3. Чем обусловлена активная и емкостная проводимость ЛЭП?
  - 4. В чем основное отличие схем замещения ЛЭП, выполненных проводами СИП?
- 5. Нарисуйте схему замещения ЛЭП, принятую в программе MATLAB, назовите ее основные отличия от схем замещения ЛЭП городских электрических сетей.
- 6. Какими стандартными блоками библиотеки Simulink можно моделировать участки линий городских электрических сетей?
- 7. В каких случаях необходим учет емкостной проводимости ЛЭП городских электрических сетей напряжением 10 и 35 кВ?
  - 8. Какими схемами замещения моделируется двухобмоточный трансформатор?
- 9. Какие элементы схемы замещения трансформатора учитывают магнитную связь между обмотками?
- 10. Какие каталожные данные необходимо знать при определении параметров трансформатора для моделирования стандартными блоками библиотеки Simulink.
- 11. Как перейти от параметров, заданных в абсолютных единицах, к относительным единицам.
- 12. Из каких разделов состоит поле задания параметров трансформатора блока Tree-Phase Transformer (Two Windings) и в каких единицах возможно задание параметров этого блока?
- 13. Как можно с помощью программы MATLAB проверить соответствие параметров трансформатора, полученных расчетным путем, его каталожным данным?
- 14. Какие схемы соединения обмоток трансформаторов применяются в городских электрических сетях и почему?
  - 15. Какими параметрами задаются нагрузки в системах электроснабжения?
  - 16. Что такое регулирующий эффект нагрузки?
  - 17. Как называется зависимость изменения нагрузки во времени?
  - 18. Какие способы моделирования нагрузок вы знаете?
  - 19. Какие способы моделирования нагрузок применяются в программе MATLAB?
- 20. Чем отличается моделирование в программе MATLAB реального и идеального источников электрической энергии?
  - 21. От чего зависят потери напряжения в линии?
  - 22. Что такое потеря напряжения и падение напряжения?
- 23. Как определяются продольная и поперечная составляющие падания напряжения в линии?
- 24. Как определяется величина потерь напряжения в линии при расчете сети по упрощенной методике?
  - 25. Как влияет принятая модель нагрузки на результаты расчета?
- 26. Как влияет регулирующий эффект нагрузки на уровень напряжения в сети? Как его можно учесть при моделировании сети в программе MATLAB?
- 27. Постройте векторную диаграмму падения напряжения в линии с одной нагрузкой на конце.

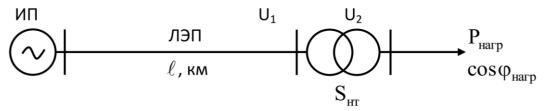
- 28. В чем разница в моделях линии напряжением 10кВ и 110 кВ?
- 29. Какая сеть называется однородной?
- 30. Может ли напряжение в начале линии быть меньше, чем напряжение в конце?
- 31. Как с помощью моделирования силовых трансформаторов можно проверить правильность определения параметров трансформатора?
- 32. Как влияет коэффициент загрузки трансформатора на величину потерь энергии в сети? При какой величине коэффициента загрузки потери мощности в трансформаторе минимальны?
- 33. На какую составляющую потерь мощности трансформатора влияет увеличение коэффициента мощности сети?
- 34. Эффективность снижения потерь напряжения в сети за счет компенсации реактивной мощности выше при выполнении линии проводами марок АС или СИП?
  - 35. От каких факторов зависит пропускная способность сети?
  - 36. Назовите методы повышения пропускной способности сети.
- 37. По какому условию осуществляется выбор конденсаторных батарей для продольного включения в сеть 10 кВ?
- 38. Как с помощью моделирования сети определить точку оптимального продольного включения конденсатора в сеть?
- 39. Какое напряжение для измерения необходимо задавать в окне настроек блока Three-Phase V-I Measurement при использовании его для подключения блока 3-phase Instantaneous Active &?
  - 40. Каковы преимущества и недостатки линий с двухсторонним питанием?
  - 41. В чем заключается сложность расчета линии с двухсторонним питанием?
  - 42. Как найти распределение мощностей (токов) в схеме с двухсторонним питанием?
- 43. От каких параметров сети зависит величина уравнительной мощности (тока), когда она возникает?
- 44. Как определить наибольшие потери напряжения в линии с двухсторонним питанием в нормальном и аварийном режиме?
- 45. Как определить оптимальную точку размыкания сети по условию минимума потерь мощности в ней?
- 46. Объясните необходимость задания напряжения источника в виртуальной модели сети выше номинального значения для того, чтобы нагрузка в каждой точке сети соответствовала заданному вами в настройках блока значению. Какие устройства в реальных электрических сетях применяются для такого регулирования?
- 47. Как с помощью блока Powergui определить потери и падение напряжения на каждом участке моделируемой сети?
  - 48. Назовите основные показатели качества электрической энергии.
  - 49. Какие факторы влияют на величину допустимых потерь напряжения в сети?
  - 50. Как влияет отклонение напряжения от номинального на работу электроприемников?
  - 51. Каковы причины значительных отклонений напряжения у городских потребителей?
  - 52. Каковы причины несимметрии напряжения у городских потребителей?
- 53. Какие существуют способы регулирования напряжения, какие из них наиболее приемлемы для городских электрических сетей?
  - 54. Что показывает коэффициент потерь мощности, как он определяется?
- 55. Объясните с помощью векторной диаграммы напряжений причину появления напряжения смещения нейтральной точки сети.
- 56. Что является причиной появления систематической и вероятностной несимметрии в сети 0,38 кВ?
- 57. Назовите основные способы уменьшения несимметрии в городских распределительных сетях 0,38 кВ.
- 58. На чем основан принцип действия симметрирующих устройств? Нарисуйте их принципиальные схемы по результатам патентного поиска.

Лектор или преподаватель, ведущий практические занятия по дисциплине производит устный опрос по пройденным теоретическим материалам и выставляет оценку в журнале с текущей успеваемостью.

Критерии и шкала оценивания по оценочному средству «Вопросы для контроля усвоения теоретического материала»

| Шкала оценивания        | Критерий оценивания                                              |
|-------------------------|------------------------------------------------------------------|
|                         | Обучающийся глубоко и в полном объёме владеет программным        |
|                         | материалом. Грамотно, исчерпывающе и логично его излагает в      |
| 5 (отлично)             | устной или письменной форме. При этом знает рекомендованную      |
| 3 (отлично)             | литературу, проявляет творческий подход в ответах на вопросы и   |
|                         | правильно обосновывает принятые решения, хорошо владеет          |
|                         | умениями и навыками при выполнении практических задач.           |
|                         | Обучающийся знает программный материал, грамотно и по сути       |
|                         | излагает его в устной или письменной форме, допуская             |
| 4 (хорошо)              | незначительные неточности в утверждениях, трактовках,            |
| (кереше)                | определениях и категориях или незначительное количество ошибок.  |
|                         | При этом владеет необходимыми умениями и навыками при            |
|                         | выполнении практических задач.                                   |
|                         | Обучающийся знает только основной программный материал,          |
|                         | допускает неточности, недостаточно чёткие формулировки,          |
| 3 (удовлетворительно)   | непоследовательность в ответах, излагаемых в устной или          |
|                         | письменной форме. При этом недостаточно владеет умениями и       |
|                         | навыками при выполнении практических задач. Допускает до 30%     |
|                         | ошибок в излагаемых ответах.                                     |
|                         | Обучающийся не знает значительной части программного материала.  |
|                         | При этом допускает принципиальные ошибки в доказательствах, в    |
| 2 (неудовлетворительно) | трактовке понятий и категорий, проявляет низкую культуру знаний, |
|                         | не владеет основными умениями и навыками при выполнении          |
|                         | практических задач. Обучающийся отказывается от ответов на       |
|                         | дополнительные вопросы.                                          |

#### 8.3 Практическое (прикладное) задание


(высокий уровень)

Задания, выполняемые на практических занятиях:

#### Залание 1

1. Для схемы сети, изображенной на рисунке определить параметры для создания модели в программе MATLAB.

Схема состоит из источника питания (ИП), одноцепепной ЛЭП длиной L, силового трансформатора номинальной мощностью  $S_{\text{нт}}$ , номинальным напряжением обмоток  $U_1$  и  $U_2$ . К трансформатору подключена нагрузка на напряжении  $U_2$  с мощностью  $P_{\text{нагр}}$  и коэффициентом мощности  $\cos\phi_{\text{нагр}}$ .



2. Выполнить моделирование сети с помощью стандартных блоков программы MATLAB.

- 3. Найти напряжение на шинах источника, токи на стороне высокого и низкого напряжений, коэффициент мощности у источника питания. Сравнить коэффициенты мощности источника питания и нагрузки, сделать вывод.
- 4. Исследовать на созданной модели сети влияние коэффициента загрузки трансформатора на потери мощности в сети.
- 5. На шинах нагрузки подключить конденсаторную батарею, оценить влияние реактивной мощности генерируемой батареей, на величину потерь напряжения и потерь мошности в линии.
- 6. Определить величину емкости конденсаторной батареи для продольного включения в сеть на головном участке моделируемой сети с целью полной компенсации индуктивного сопротивления линии, оценить, насколько при этом увеличивается напряжение на выходе конденсаторной батареи по сравнению с напряжением на входе.

#### Задание 2.

- 1. Изучить теоретические сведения о расчете сложных замкнутых сетей, рассмотреть расчет сетей.
  - 2. Для заданного варианта выполнить электрический расчет замкнутой сети.
- 3. Определить потоки мощностей по участкам сети в нормальном режиме, определить точку токораздела.
  - 4. Выполнить расчет потерь напряжения в нормальном и аварийном режимах.
- 5. Вычислить напряжения в узловых точках линии и построить кривые распределения напряжений по длине линии.
- 6. По заданному варианту задания рассчитать параметры схемы замещения сети для моделирования в программе MATLAB.
  - 7. Собрать имитационную модель сети в программе MATLAB приложении Simulink.
- 8. Результаты измерений и вычислений свести в таблицу и построить графики изменения напряжения вдоль линии.
- 9. Выполнить оценку величины уравнительных токов (мощностей) от уровня напряжений источников, оценить их влияние на распределение мощностей между источниками
- 10. Сравнить экспериментальные и расчетные данные и дать заключение по выполненной работе.
- 11. Определить потери мощности в сети по показаниям приборов в модели сети, поочередно произвести размыкание в сети в узлах 1, 2, 3. Найти оптимальную точку размыкания с точки зрения минимума потерь мощности. Дать пояснения, сделать выводы.
- 12. Выполнить сравнительный анализ моделирования нормального режима работы сети по параметрам, рассчитанным в данной работе, и по параметрам, рассчитанным с помощью инструмента «Compute RLC Line Parameters» блока Powergui, передав их в блок Three-Phase PI Section Line, дать необходимые пояснения, оценку погрешности при несовпадении результатов расчета.

#### Задание 3.

- 1. Определить параметров схемы замещения сети и нагрузок по заданному варианту для моделирования в программе MATLAB.
- 2. Определить потери мощности в каждой фазе по приборам виртуальной установки. Потери определяются как разность показаний приборов в начале и конце моделируемого участка (Display1 и Display2) каждой фазы.
- 3. Определить величины токов и напряжений и их фазы на каждом участке сети по показаниям блока Powergui.
- 4. Построить векторные диаграммы токов несимметричного режима. Определить симметричные составляющие и показатели несимметрии для каждого из рассматриваемых режимов.
- 5. Оценить влияние показателей несимметрии на величину потерь напряжения и потерь мощности в сети.

- 6. Оценить влияние конструктивного исполнения линии (сечения фазных проводов и нулевого провода, марка провода) на потери мощности в сети при одной и той же несимметрии нагрузки.
  - 7. Определить коэффициенты увеличения мощности.
- 8. Построить зависимости коэффициента потерь мощности от коэффициентов несимметрии  $K_{2U},\,K_{0U},\,K_{2I},\,K_{0I}.$

Критерии и шкала оценивания по оценочному средству «Практическое задание»

| притории и шими одонизмини не одоне шему ородотру кирими точкое видинием |                                                                |  |  |
|--------------------------------------------------------------------------|----------------------------------------------------------------|--|--|
| Шкала оценивания                                                         | Характеристика знания предмета и ответов                       |  |  |
|                                                                          | Обучающийся полностью и правильно выполнил задание. Показал    |  |  |
| 5 (отлично)                                                              | отличные знания, умения и владения навыками, применения их при |  |  |
|                                                                          | решении задач в рамках усвоенного учебного материала.          |  |  |
|                                                                          | Обучающийся выполнил задание с небольшими неточностями.        |  |  |
| 4 (хорошо)                                                               | Показал хорошие знания, умения и владения навыками, применения |  |  |
|                                                                          | их при решении задач в рамках освоенного учебного материала.   |  |  |
|                                                                          | Обучающийся выполнил задание с существенными неточностями.     |  |  |
| 3 (удовлетворительно)                                                    | Показал удовлетворительные знания, умения и владения навыками, |  |  |
|                                                                          | применения их при решении задач.                               |  |  |
|                                                                          | Обучающийся выполнил задание неправильно. При выполнении       |  |  |
| 2 (неудовлетворительно)                                                  | обучающийся продемонстрировал недостаточный уровень знаний,    |  |  |
| 2 (неудовлетворительно)                                                  | умений и владения ими при решении задач в рамках усвоенного    |  |  |
|                                                                          | учебного материала.                                            |  |  |

#### 8.4 Оценочные средства для промежуточной аттестации (экзамен)

Вопросы к экзамену:

- 1. Дать определение математического моделирования.
- 2. Что такое математическая модель?
- 3. Что такое физическая модель?
- 4. Отличие материальных и идеальных моделей.
- 5. Свойства эффективной модели.
- 6. Процедура формирования эффективной модели.
- 7. Правила составления математических моделей.
- 8. Для чего составляются дифференциальные уравнения.
- 9. Как вычислить корень характеристического уравнения.
- 10. Методы решения дифференциальных уравнений в математическом пакете MathCad.
- 11. Типы дифференциальных уравнений.
- 12. Операторы для решения дифференциальных уравнений в математическом пакете MathCad.
  - 13. Что такое 1-я производная?
  - 14. Что такое 2-я производная?
- 15. Из чего складывается погрешность решения дифференциального уравнения в математическом пакете MathCad?
  - 16. Дать определения установившегося режима в цепи?
  - 17. Что такое постоянная времени измерительной цепи?
  - 18. Что такое электрический конденсатор?
  - 19. Дать определение переходному процессу.
  - 20. Основные методы анализа переходных процессов.
  - 21. Необходимость применения моделирования при исследовании технических систем.
  - 22. Нужно ли стремиться к абсолютному подобию модели и оригинала?
  - 23. Дайте определения понятиям «модель», «оригинал», «моделирование».
  - 24. Приведите примеры объектов и их возможных моделей в электроснабжении.

- 25. Каковы основные цели моделирования технических объектов?
- 26. Назовите и кратко охарактеризуйте основные этапы моделирования.
- 27. Назовите возможные классификационные признаки моделей.
- 28. Приведите классификацию и дайте примеры идеальных (абстрактных) моделей.
- 29. Приведите классификацию и дайте примеры материальных моделей.
- 30.Охарактеризуйте особенности физического и натурного моделирования, приведите примеры их использования в задачах электроснабжения.
  - 31. Дайте характеристику математических моделей; приведите их примеры.
  - 32. Назовите достоинства и особенности математического моделирования.
  - 33.Охарактеризуйте основные этапы компьютерного моделирования.
  - 34.Основные требования к математическим моделям.
  - 35. Классификация математических моделей.
- 36.В чем состоит основное отличие между структурными и функциональными математическими моделями, их достоинства и недостатки?
- 37.В чем состоит основное отличие между аналитическими и алгоритмическими математическими моделями, их достоинства и недостатки?
- 38. Дайте характеристику имитационных математических моделей; назовите область их применения, объясните преимущества.
- 39. Назовите основные типы задач моделирования в электроснабжении, дайте им краткую характеристику.
- 40. Каковы особенности задач моделирования в электроснабжении, требования к точности выходных данных?
  - 41. Математические модели простейших элементов электротехнических устройств.
- 42. Математическая модель резистора в цепи переменного тока, временные диаграммы напряжения, тока, мощности и энергии.
- 43. Математическая модель индуктивности в цепи переменного тока, временные диаграммы напряжения, тока, мощности и энергии.
- 44. Математическая модель емкости в цепи переменного тока, временные диаграммы напряжения, тока, мощности и энергии.
- 45. Математические модели источников питания систем электроснабжения и какие существуют особенности их моделирования.
  - 46. Математическая модель двигателей для учета подпитки места короткого замыкания.
- 47. Как моделируются элементы электрических сетей при расчете рабочих режимов систем электроснабжения?
  - 48. Математическая модель силового трансформатора.
  - 49. Математическая модель линии электропередач.
- 50. Основные методы моделирования электрических нагрузок, их достоинства и недостатки.

Критерии и шкала оценивания к промежуточной аттестации «экзамен»

| Шкала оценивания | Критерий оценивания                                                                                                                                                                                                                                                                                                                                             |  |  |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                  | Обучающийся глубоко и в полном объёме владеет программным материалом. Грамотно, исчерпывающе и логично его излагает в устной или письменной форме. При этом знает рекомендованную литературу, проявляет творческий подход в ответах на вопросы и правильно обосновывает принятые решения, хорошо владеет умениями и навыками при выполнении практических задач. |  |  |

|                         | Обучающийся знает программный материал, грамотно и по сути       |
|-------------------------|------------------------------------------------------------------|
|                         | излагает его в устной или письменной форме, допуская             |
| 4 (хорошо)              | незначительные неточности в утверждениях, трактовках,            |
| + (хорошо)              | определениях и категориях или незначительное количество ошибок.  |
|                         | При этом владеет необходимыми умениями и навыками при            |
|                         | выполнении практических задач.                                   |
|                         | Обучающийся знает только основной программный материал,          |
|                         | допускает неточности, недостаточно чёткие формулировки,          |
| 3 (удовлетворительно)   | непоследовательность в ответах, излагаемых в устной или          |
| 3 (удовлетворительно)   | письменной форме. При этом недостаточно владеет умениями и       |
|                         | навыками при выполнении практических задач. Допускает до 30%     |
|                         | ошибок в излагаемых ответах.                                     |
|                         | Обучающийся не знает значительной части программного материала.  |
|                         | При этом допускает принципиальные ошибки в доказательствах, в    |
| 2 (неудовлетворительно) | трактовке понятий и категорий, проявляет низкую культуру знаний, |
| 2 (неудовлетворительно) | не владеет основными умениями и навыками при выполнении          |
|                         | практических задач. Обучающийся отказывается от ответов на       |
|                         | дополнительные вопросы.                                          |

# 9. Особенности организации обучения для лиц с ограниченными возможностями здоровья и инвалидов

При необходимости рабочая программа учебной дисциплины может быть адаптирована для обеспечения образовательного процесса инвалидов и лиц с ограниченными возможностями здоровья, в том числе с применением электронного обучения и дистанционных образовательных технологий.

Для этого требуется заявление студента (его законного представителя) и заключение психолого-медико-педагогической комиссии (ПМПК). В случае необходимости обучающимся из числа лиц с ограниченными возможностями здоровья (по заявлению обучающегося), а для инвалидов также в соответствии с индивидуальной программой реабилитации инвалида могут предлагаться следующие варианты восприятия учебной информации с учетом их индивидуальных психофизических особенностей:

- создание текстовой версии любого нетекстового контента для его возможного преобразования в альтернативные формы, удобные для различных пользователей;
- создание контента, который можно представить в различных видах без потери данных или структуры, предусмотреть возможность масштабирования текста и изображений без потери качества, предусмотреть доступность управления контентом с клавиатуры;
- создание возможностей для обучающихся воспринимать одну и ту же информацию из разных источников, например, так, чтобы лица с нарушениями слуха получали информацию визуально, с нарушениями зрения аудиально;
- применение программных средств, обеспечивающих возможность освоения навыков и умений, формируемых дисциплиной (модулем), за счёт альтернативных способов, в том числе виртуальных лабораторий и симуляционных технологий;
- применение электронного обучения, дистанционных образовательных технологий для передачи информации, организации различных форм интерактивной контактной работы обучающегося с преподавателем, в том числе вебинаров, которые могут быть использованы для проведения виртуальных лекций с возможностью взаимодействия всех участников дистанционного обучения, проведения семинаров, выступления с докладами и защиты выполненных работ, проведения тренингов, организации коллективной работы;
- применение электронного обучения, дистанционных образовательных технологий для организации форм текущего и промежуточного контроля;

- увеличение продолжительности сдачи обучающимся инвалидом или лицом с ограниченными возможностями здоровья форм промежуточной аттестации по отношению к установленной продолжительности их сдачи:
- продолжительность сдачи зачёта или экзамена, проводимого в письменной форме, не более чем на 90 минут;
- продолжительность подготовки обучающегося к ответу на зачёте или экзамене, проводимом в устной форме, не более чем на 20 минут;
- продолжительность выступления обучающегося при защите курсовой работы не более чем на 15 минут.

### Лист изменений и дополнений

| <b>№</b><br>п/п | Виды дополнений и изменений с указанием страниц | Дата и номер протокола заседания кафедры (кафедр), на котором были рассмотрены и одобрены изменения и дополнения | Подпись (с расшифровкой) заведующего кафедрой (заведующих кафедрами) |
|-----------------|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| 1.              |                                                 |                                                                                                                  |                                                                      |
| 2.              |                                                 |                                                                                                                  |                                                                      |
| 3.              |                                                 |                                                                                                                  |                                                                      |
| 4.              |                                                 |                                                                                                                  |                                                                      |