Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Луганский государственный университет имени Владимира Даля»

Северодонецкий технологический институт (филиал)

Кафедра управления инновациями в промышленности

УТВЕРЖДАЮ: Врио директора СТИ (филиал) ФГБОУ ВО «ДГУ им. В. Даля» Ю.В. Бородач (полись) 2024 года

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«Микропроцессорные устройства автоматизации»

По направлению подготовки 15.03.04 «Автоматизация технологических процессов и производств»

профиль «Компьютерные и специализированные системы автоматизации производства»

Лист согласования РПУД

Рабочая программа учебной дисциплины «Микропроцессорные устройства автоматизации» по направлению подготовки 15.03.04 «Автоматизация технологических процессов и производств», профиль «Компьютерные и специализированные системы автоматизации производства» — 16 с.

Рабочая программа учебной дисциплины «Микропроцессорные устройства автоматизации» разработана в соответствии с ФГОС ВО, утвержденным приказом Министерства науки и высшего образования Российской Федерации от <u>09.08.2021</u> № <u>730</u> (с изменениями и дополнениями).

СОСТАВИТЕЛЬ: Доцент, к.т.н. Ткачев Р.Ю.
Рабочая программа дисциплины утверждена на заседании кафедры управления инновациями в промышленности <u>« 02 » 09 </u>
И.о. заведующего кафедрой управления инновациями в промышленности Е.А. Бойко Переутверждена: «»20г., протокол №
Рекомендована на заседании учебно-методической комиссии Северодонецкого
технологического института (филиал) федерального государственного бюджетного образовательного учреждения высшего образования «Луганский государственный университет имени Владимира Даля» <u>« 16 »09</u> 2024 г., протокол № <u>1.</u>
Председатель учебно-методической комиссии СТИ (филиал) ФГБОУ ВО «ЛГУ им. В. Даля» Ю.В. Бородач

[©] Ткачев Р.Ю., 2024 год

[©] СТИ (филиал) ФГБОУ ВО «ЛГУ им. В. Даля», 2024 год

Структура и содержание дисциплины

1. Цели и задачи дисциплины, ее место в учебном процессе

Целью изучения дисциплины «Микропроцессорные устройства автоматизации» является формирование у студентов теоретических знаний и практических навыков в области схемотехники устройств и узлов средств и систем автоматизации.

Основными задачами изучения дисциплины «Микропроцессорные устройства автоматизации» являются: приобретение навыков в области схемотехники устройств и узлов средств и систем автоматизации.

2. Место дисциплины в структуре ОПОП ВО.

Дисциплина «Микропроцессорные устройства автоматизации» входит в обязательную часть блока 1 «Дисциплины (модули)» подготовки студентов по направлению подготовки 15.03.04 «Автоматизация технологических процессов и производств».

Дисциплина «Микропроцессорные устройства автоматизации» основывается на базе дисциплин: Электротехника, электроника и автоматизация, Физика, Математика, Управление в автоматизированном производстве.

Полученные знания могут стать основой для изучения следующих дисциплин: Проектирование автоматизированных систем, Автоматизация управления жизненным циклом продукции, Монтаж и наладка автоматизированных систем.

3. Требования к результатам освоения содержания дисциплины

Содержание компетенции	Код компетенции	Код и наименование индикатора достижения компетенции
Способен выполнять работы по проектированию АСУП	ПК-1	ПК-1.1. участвует в определении планируемых свойств АСУП ПК-1.2 разрабатывает техническое задание, план создания и внедрения АСУП ПК-1.3 участвует в проектировании АСУП

4. Структура и содержание дисциплины

4.1. Объем учебной дисциплины и виды учебной работы

Вид учебной работы	Объем ч	насов (зач. ед.	.)
	Очная форма	Очно- заочная форма	Заочная форма
Общая учебная нагрузка (всего)	144 (4 зач. ед.)	-	144 (4 зач. ед.)
Обязательная контактная работа (всего)	72	-	16
в том числе:			
Лекции	36	-	8
Семинарские занятия	-	-	-
Практические занятия	-	-	-
Лабораторные работы	36	-	8
Курсовая работа (курсовой проект)	-	-	-
Другие формы и методы организации образовательного процесса (расчетно-графические работы, индивидуальные задания и т.п.)	-	-	-
Самостоятельная работа студента (всего)	72	-	128
Форма аттестации	6 семестр диф. зачет	-	6 семестр диф. зачет

4.2. Содержание разделов дисциплины

Тема 1. Микропроцессорная техника в системах управления

История развития программируемых контроллеров. Типы ПЛК. Устройство программирования и человеко-машинный интерфейс.

Тема 2. Архитектура программируемого контроллера общепромышленного применения

Память ПЛК. Системная шина. Порты ввода/вывода.

Тема 3. Сопряжение датчиков и исполнительных механизмов с контроллером

Подключение дискретных датчиков к ПЛК. Дребезг контактов и способы его подавления. Гальваническая развязка цепей датчика и ПЛК. Подключение аналоговых датчиков к ПЛК.

Тема 4. Основы операционных систем реального времени и систем программирования

Тема 5. Графические и текстовые языки программирования промышленных контроллеров международных стандартов

Язык LD. Язык FBD. Язык последовательных функциональных схем SFC. Язык IL (Instruction List, список команд). Язык ST.

Тема 6. Язык структурированных текстов (ST)

Структура программы. Стандартные библиотеки. Основные операторы. Типы данных.

4.3. Лекшии

№	№ Название темы		Объем часов		
П/П		Заочная форма			
	1 семестр				
1	Микропроцессорная техника в системах управления	6	-	1	
2	Архитектура программируемого контроллера	6	-	1	

	общепромышленного применения			
3	Сопряжение датчиков и исполнительных механизмов с	6	_	1
	контроллером	Ü		•
4	4 Основы операционных систем реального времени и систем 6 -		1	
программирования		1		
5	Графические и текстовые языки программирования		2	
	промышленных контроллеров международных стандартов	J		
6	6 Язык структурированных текстов (ST)		-	2
Ито	го:	36	-	8

4.4. Лабораторные работы

№	Название темы		Объем часон	3
п/п		Очная форма	Очно- заочная форма	Заочная форма
	1 семестр			
1	Основы операционных систем реального времени и систем программирования	6	-	1
2	Язык LD	6	_	1
3	Язык FBD	6	-	1
4	4 Язык последовательных функциональных схем SFC		-	1
5	5 Язык IL (Instruction List, список команд		-	2
6	6 Язык ST		_	2
Итого:		36	-	8

4.5. Практические занятия не предусмотрены учебным планом

			бъем часов	
№ п/п	Название темы	Очная форма	Очно- заочная форма	Заочная форма
1		ı	-	-
2		ı	-	_
3		ı	-	_
4		ı	-	_
5		-	_	_
6		-	_	-
Итого		-	-	-

4.6. Самостоятельная работа студентов

				Объем час	ОВ
№ п/п	Название темы	Вид СРС	Очная форма	Очно- заочная форма	Заочная форма
1	Микропроцессорная техника в системах управления	Проработка материала лекций	10	1	20
2	Основы операционных систем реального времени	Подготовка к лабораторным работам	10	-	20

	и систем программирования				
3	Архитектура программируемого контроллера общепромышленного применения	Самостоятельное изучение материала	10	-	20
4	Язык LD	Подготовка к защите лабораторных работ	10	-	20
5	Основы операционных систем реального времени и систем программирования	Подготовка к текущему контролю	10	-	20
6	Язык IL (Instruction List, список команд	Подготовка к защите лабораторных работ	10	-	20
7	Диф. зачет	Подготовка к диф. зачету	12	-	8
Итого		<u> </u>	72	-	128

4.7. Курсовые работы/проекты по дисциплине «Микропроцессорные устройства автоматизации» не предполагаются учебным планом.

5. Образовательные технологии

Преподавание дисциплины ведется с применением следующих видов образовательных технологий:

традиционные объяснительно-иллюстративные технологии, которые обеспечивают доступность учебного материала для большинства студентов, системность, отработанность организационных форм и привычных методов, относительно малые затраты времени;

технологии проблемного обучения, направленные на развитие познавательной активности, творческой самостоятельности студентов и предполагающие последовательное и целенаправленное выдвижение перед студентом познавательных задач, разрешение которых позволяет студентам активно усваивать знания (используются поисковые методы; постановка познавательных задач);

технологии развивающего обучения, позволяющие ориентировать учебный процесс на потенциальные возможности студентов, их реализацию и развитие;

технологии концентрированного обучения, суть которых состоит в создании максимально близкой к естественным психологическим особенностям человеческого восприятия структуры учебного процесса и которые дают возможность глубокого и системного изучения содержания учебных дисциплин за счет объединения занятий в тематические блоки;

технологии дифференцированного обучения, обеспечивающие возможность создания оптимальных условий для развития интересов и способностей студентов, в том числе и студентов с особыми образовательными потребностями, что позволяет реализовать в культурнообразовательном пространстве университета идею создания равных возможностей для получения образования технологии активного (контекстного) обучения, с помощью которых осуществляется моделирование предметного, проблемного и социального содержания будущей профессиональной деятельности студентов (используются активные и интерактивные методы обучения) и т.д.

Используемые образовательные технологии и методы направлены на повышение качества подготовки путем развития у обучающихся способностей к самообразованию и нацелены на активизацию и реализацию личностного потенциала каждого студента.

Максимальная эффективность педагогического процесса достигается путем конструирования оптимального комплекса педагогических технологий и (или) их элементов на личностно-

ориентированной, деятельностной, диалогической основе и использования необходимых современных средств обучения.

6. Учебно-методическое и информационное обеспечение дисциплины

- <mark>а) основная литература:</mark>
- б) дополнительная литература:

в) методические рекомендации: г) интернет-ресурсы:

Министерство науки и высшего образования РФ – https://minobrnauki.gov.ru/

Федеральная служба по надзору в сфере образования и науки – http://obrnadzor.gov.ru/

Портал Федеральных государственных образовательных стандартов высшего образования – http://fgosvo.ru

Федеральный портал «Российское образование» – http://www.edu.ru/

Информационная система «Единое окно доступа к образовательным ресурсам» - http://window.edu.ru/

Федеральный центр информационно-образовательных ресурсов – http://fcior.edu.ru/

Электронные библиотечные системы и ресурсы:

Электронно-библиотечная система «Консультант студента» – http://www.studentlibrary.ru/cgi-bin/mb4x

Научная электронная библиотека Elibrary – Режим доступа: URL: http://elibrary.ru/

Информационный ресурс библиотеки образовательной организации:

Научная библиотека имени А. Н. Коняева – http://biblio.dahluniver.ru/

7. Материально-техническое и программное обеспечение дисциплины

Освоение дисциплины «Микропроцессорные устройства автоматизации» предполагает использование академических аудиторий, соответствующих действующим санитарным и противопожарным правилам и нормам.

Прочее: рабочее место преподавателя, оснащенное компьютером с доступом в Интернет.

Программное обеспечение:

Функциональное назначение	Бесплатное программное обеспечение	Ссылки
Офисный пакет	Libre Office 6.3.1	https://www.libreoffice.org/ https://ru.wikipedia.org/wiki/LibreOffice
Операционная система	UBUNTU 19.04	https://ubuntu.com/ https://ru.wikipedia.org/wiki/Ubuntu
Браузер	FirefoxMozilla	http://www.mozilla.org/ru/firefox/fx
Браузер	Opera	http://www.opera.com

Почтовый клиент	MozillaThunderbird	http://www.mozilla.org/ru/thunderbird
Файл-менеджер	FarManager	http://www.farmanager.com/download.php
Архиватор	7Zip	http://www.7-zip.org/
Графический редактор	GIMP (GNU Image Manipulation Program)	http://www.gimp.org/ http://gimp.ru/viewpage.php?page_id=8 http://ru.wikipedia.org/wiki/GIMP
Редактор PDF	PDFCreator	http://www.pdfforge.org/pdfcreator
Аудиоплейер	VLC	http://www.videolan.org/vlc/

8. Оценочные средства по дисциплине

Паспорт оценочных средств по учебной дисциплине

«Микропроцессорные устройства автоматизации»

Описание уровней сформированности и критериев оценивания компетенций на этапах их формирования в ходе изучения дисциплины

Этап	Код компетенции	Уровни сформированнос ти компетенции	Критерии оценивания компетенции
Начальный	аботы по П	Пороговый	Знать: методы определения планируемых свойств АСУП
Основной	Опособен выполнять работы по проектированию АСУП	Базовый	Уметь: разрабатывать техническое задание, план создания и внедрения АСУП
Заключительный	ПК-1. Способен проектир	Высокий	Владеть: навыками проектирования АСУП

Перечень компетенций (элементов компетенций), формируемых в результате освоения учебной дисциплины

№ π/π	Код контрол- ируемой ком- петен- ции	Формулировка контролируемой компетенции	Индикаторы достижений компетенции (по реализуемой дисциплине)	Контролируемые темы учебной дисциплины, практики	Этапы формиро- вания (семестр изучения)
1	ПК-1	Способен выполнять работы по проектированию АСУП	ПК-1.1. участвует в определении планируемых свойств АСУП ПК-1.2 разрабатывает	Микропроцессорная техника в системах управления	6
			техническое задание, план создания и внедрения АСУП ПК-1.3 участвует в проектировании АСУП	Архитектура программируемого контроллера общепромышленного применения	6
			ACTI	Сопряжение датчиков и исполнительных механизмов с контроллером	6
				Основы операционных систем реального времени и систем программирования	6
				Графические и текстовые языки программирования промышленных контроллеров международных стандартов	6
				Язык структурированных текстов (ST)	6

Показатели и критерии оценивания компетенций, описание шкал оценивания

№ п/ п	Код контролируемо й компетенции	Индикаторы достижений компетенции (по реализуемой дисциплине)	Перечень планируемых результатов	Контроли -руемые темы учебной дисципли ны	Наименование оценочного средства
1	ПК-1. Способен выполнять работы по проектировани ю АСУП	ПК-1.1. участвует в определении планируемых свойств АСУП ПК-1.2 разрабатывает техническое задание, план создания и внедрения АСУП ПК-1.3 участвует в проектировании АСУП	участвует в определении планируемых свойств АСУП; разрабатывает техническое задание, план создания и внедрения АСУП; участвует в проектировании АСУП	Тема 1 Тема 2 Тема 3 Тема 4 Тема 5 Тема 6	разноуровневые контрольные работы и задания

1. Вопросы к контрольным работам

(пороговый уровень)

- 1. История развития программируемых контроллеров.
- 2. Типы ПЛК.
- 3. Устройство программирования и человеко-машинный интерфейс.
- 4. Применение ПЛК.
- 5. Центральное процессорное устройство.
- 6. Память ПЛК.
- 7. Системная шина.
- 8. Порты ввода/вывода.
- 9. Подключение дискретных датчиков к ПЛК.
- 10. Дребезг контактов и способы его подавления.

Критерии и шкала оценивания по оценочному средству «контрольная работа»

Шкала	оценивания	Критерий оценивания	
(интервал баллов)			
5		Контрольная работа выполнена на высоком уровне (правильные	
		ответы даны на 90 – 100% вопросов/задач)	
4		Контрольная работа выполнена на среднем уровне (правильные	
		ответы даны на 75 – 89% вопросов/задач)	
3		Контрольная работа выполнена на низком уровне (правильные	
		ответы даны на 50 – 74% вопросов/задач)	
2		Контрольная работа выполнена на неудовлетворительном уровне	
		(правильные ответы даны менее чем на 50%)	

2. Вопросы для обсуждения (в виде индивидуальных заданий)

(базовый уровень)

- 1. Гальваническая развязка цепей датчика и ПЛК
- 2. Подключение аналоговых датчиков к ПЛК.
- 3. Дискретные выходы.
- 4. Аналоговые выходы ПЛК.
- 5. Основы операционных систем реального времени и систем программирования.
- 6. Язык LD.
- 7. Язык FBD.
- 8. Язык последовательных функциональных схем SFC.
- 9. Язык IL (Instruction List, список команд).
- 10. Язык ST.

Критерии и шкала оценивания по оценочному средству «разноуровневые задания и задачи»

Шкала оценивания	Критерий оценивания		
(интервал баллов)			
5	Обучающийся полностью и правильно выполнил задание.		
	Показал отличные знания, умения и владения навыками применения их при решении задач в рамках усвоенного учебного		
	материала. Работа оформлена аккуратно в соответствии с		
	предъявляемыми требованиями		
4 Обучающийся выполнил задание с небольшими неточ			
	Показал хорошие знания, умения и владения навыками		
	применения их при решении задач в рамках освоенного учебного		
	материала. Есть недостатки в оформлении работы		
3 Обучающийся выполнил задание с существенными нето			
	Показал удовлетворительные знания, умения и владения		
	навыками применения их при решении задач		
2	Обучающийся выполнил задание неправильно. При выполнении		
	обучающийся продемонстрировал недостаточный уровень		
	знаний, умений и владения ими при решении задач в рамках		
	усвоенного учебного материала		

3. Вопросы к лабораторным работам

(высокий уровень)

- 1. Синтаксис языка ST.
- 2. Типы данных.
- 3. Переменные.
- 4. Области переменных и их адресация.
- 5. Структура программы.
- 6. Распознавание нарастающего и падающего фронта.
- 7. Таймеры.
- 8. Счетчики.
- 9. Команды нормализации NORM X и масштабирования SCALE X.
- 10. Система программирования контроллеров фирмы Сименс.
- 11. Конфигурация устройств.
- 12. Конфигурирование работы ЦПУ.
- 13. Интерфейс связи контроллера и компьютера.
- 14. Запись прикладной программы в память контроллер.
- 15. Таблицы наблюдения для контроля программы пользователя.

Критерии и шкала оценивания по оценочному средству «лабораторная работа»

Шкала оценивания (интервал баллов)	Критерий оценивания	
5	Практическая работа выполнена на высоком уровне (правильные ответы даны на 90-100% вопросов/задач)	
4 Практическая работа выполнена на среднем уровне (пра ответы даны на 75-89% вопросов/задач)		
3	Практическая работа выполнена на низком уровне (правильные ответы даны на 50-74% вопросов/задач)	
2	Практическая работа выполнена на неудовлетворительном уровне (правильные ответы даны менее чем на 50%)	

4. Оценочные средства для промежуточной аттестации (диф. зачет)

- 1. История развития программируемых контроллеров.
- 2. Типы ПЛК.
- 3. Устройство программирования и человеко-машинный интерфейс.
- 4. Применение ПЛК.
- 5. Центральное процессорное устройство.
- 6. Память ПЛК.
- 7. Системная шина.
- 8. Порты ввода/вывода.
- 9. Подключение дискретных датчиков к ПЛК.
- 10. Дребезг контактов и способы его подавления.
- 11. Гальваническая развязка цепей датчика и ПЛК
- 12. Подключение аналоговых датчиков к ПЛК.
- 13. Дискретные выходы.
- 14. Аналоговые выходы ПЛК.
- 15. Основы операционных систем реального времени и систем программирования.
- 16. Язык LD.
- 17. Язык FBD.
- 18. Язык последовательных функциональных схем SFC.
- 19. Язык IL (Instruction List, список команд).
- 20. Язык ST.
- 21. Синтаксис языка ST.
- 22. Типы данных.
- 23. Переменные.
- 24. Области переменных и их адресация.
- 25. Структура программы.
- 26. Распознавание нарастающего и падающего фронта.
- 27. Таймеры.
- 28. Счетчики.
- 29. Команды нормализации NORM_X и масштабирования SCALE_X.
- 30. Система программирования контроллеров фирмы Сименс.
- 31. Конфигурация устройств.
- 32. Конфигурирование работы ЦПУ.
- 33. Интерфейс связи контроллера и компьютера.
- 34. Запись прикладной программы в память контроллер.
- 35. Таблицы наблюдения для контроля программы пользователя.
- 36. Использование инициирования при контроле и изменении переменных ПЛК.

- 37. Разблокирование выходов в состоянии STOP.
- 38. Принудительное присваивание значений в ЦПУ.
- 39. Виды интерфейсов связи.
- 40. Интерфейс USB.
- 41. Классификация промышленных сетей.
- 42. Промышленные протоколы CAN, PROFIBUS, Foundation fieldbus.
- 43. Физический уровень протокола САХ.
- 44. Промышленная сеть стандарта PROFIBUS.
- 45. HART стандарт передачи данных через токовую петлю 4–20 мА.
- 46. Основные компоненты SCADA. Архитектура SCADA-систем.
- 47. Графический интерфейс.
- 48. SCADA-система Simatic WinCC.
- 49. Система архивирования и регистрации.
- 50. Администрирование и идентификация пользователей микропроцессорной системы в панели оператора Simatic.
 - 51. Подсистема рецептов в SCADA-системе Simatic WinCC.
 - 52. Обзор стандарта ОРС.
 - 53. Управление процессом в реальном времени.
 - 54. Управление на основе последовательного программирования.
 - 55. Управление на основе прерываний.
 - 56. Обработка аналоговых сигналов в процессе ввода в контроллер.
 - 57. Контроль граничных значений аналоговых переменных.
 - 58. Аналоговые и дискретные регуляторы.
 - 59. Релейное управление.
 - 60. Алгоритм ПИД-регулятора.
 - 61. Выбор периода дискретизации и параметров регулятора.

Критерии и шкала оценивания к промежуточной аттестации «диф. зачет»

Шкала оценивания	Характеристика знания предмета и ответов		
отлично (5)	Студент глубоко и в полном объёме владеет программным материалом. Грамотно, исчерпывающе и логично его излагает в устной или письменной форме. При этом знает рекомендованную литературу, проявляет творческий подход в ответах на вопросы и правильно обосновывает принятые решения, хорошо владеет умениями и навыками при выполнении практических задач		
хорошо (4)	Студент знает программный материал, грамотно и по сути излагает его в устной или письменной форме, допуская незначительные неточности в утверждениях, трактовках, определениях и категориях или незначительное количество ошибок. При этом владеет необходимыми умениями и навыками при выполнении практических задач		
удовлетворительно (3)	Студент знает только основной программный материал, допускает неточности, недостаточно чёткие формулировки, непоследовательность в ответах, излагаемых в устной или письменной форме. При этом недостаточно владеет умениями и навыками при выполнении практических задач. Допускает до 30% ошибок в излагаемых ответах		
неудовлетворительно (2)	Студент не знает значительной части программного материала. При этом допускает принципиальные ошибки в доказательствах, в трактовке понятий и категорий, проявляет низкую культуру знаний, не владеет основными умениями и навыками при выполнении практических задач. Студент отказывается от ответов на дополнительные вопросы		

Лист изменений и дополнений

No	Виды дополнений и	Дата и номер протокола	Подпись (с
Π/Π	изменений	заседания кафедры	расшифровкой)
		(кафедр), на котором были	заведующего кафедрой
		рассмотрены и одобрены	(заведующих кафедрами)
		изменения и дополнения	