МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ЛУГАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ ВЛАДИМИРА ДАЛЯ»

КОЛЛЕДЖ СЕВЕРОДОНЕЦКОГО ТЕХНОЛОГИЧЕСКОГО ИНСТИТУТА (филиал) ФГБОУ ВО «ЛГУ им. В. Даля»

КОМПЛЕКТ КОНТРОЛЬНО-ОЦЕНОЧНЫХ СРЕДСТВ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ

ОП.01 МАТЕМАТИЧЕСКИЕ МЕТОДЫ РЕШЕНИЯ ПРИКЛАДНЫХ ПРОФЕССИОНАЛЬНЫХ ЗАДАЧ

Специальность 18.02.14 Химическая технология производства химических соединений

технологического института (филиал) ФГБОУ ВО «ЛГУ им. В. Даля»
Протокол № <u>01</u> от « <u>05</u> » _ <u>сентября</u> _20 <u>25</u> г.
Председатель комиссии В.Н. Лескин
Разработан на основе федерального государственного образовательного стандарта среднего профессионального образование по специальности 18.02.14 Химическая технология производства химических соединений
УТВЕРЖДЕН заместителем директора
Составитель(и):
преподаватель СПО Колледжа Северодонецкого технологического института (филиал) ФГБОУ «ЛГУ им. В.Даля»
технологического института (филиал) Фт воз «лг у им. в.даля»

РАССМОТРЕН И СОГЛАСОВАН методической комиссией Колледжа Северодонецкого

1. ПАСПОРТ КОМПЛЕКТА ОЦЕНОЧНЫХ СРЕДСТВ

1.1. Область применения комплекта оценочных средств

Комплект оценочных средств предназначен для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины «Математика».

КОС включают контрольные материалы для проведения текущего контроля в форме выполнения практических работ, контрольных заданий, выполнения тестовых заданий и промежуточной аттестации в форме дифференцированного зачета.

1.2. Требования к результатам освоения дисциплины

В результате освоения дисциплины обучающийся осваивает элементы **общих компетенций (ОК)**:

- OК 01. Выбирать способы решения задач профессиональной деятельности применительно к различным контекстам.
- ОК 02. Использовать современные средства поиска, анализа и интерпретации информации, и информационные технологии для выполнения задач профессиональной деятельности.
- ОК 04. Эффективно взаимодействовать и работать в коллективе и команде.

Перечень **профессиональных компетенций (ПК)**, элементы которых формируются в рамках дисциплины:

ПК 1.7. Выполнять первичную математическую обработку результатов полевых геодезических измерений с использованием современных компьютерных программ, анализировать и устранять причины возникновения брака и грубых ошибок измерений.

В рамках программы учебной дисциплины обучающимися осваиваются умения и знания

Код ПК, ОК	Умения	Знания
ОК 01,02,04 ПК 1.7	- решать прикладные задачи в области профессиональной деятельности	значение математики в профессиональной деятельности и при освоении основной профессиональной образовательной программы по специальности; основные математические методы решения прикладных задач в области профессиональной деятельности; основные понятия и методы

математического анализа линейной алгебры, теории
комплексных чисел, теории
вероятностей и математической
статистики;
- основы интегрального и
дифференциального исчисления

2. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Контроль и оценка результатов освоения учебной дисциплины осуществляется преподавателем в процессе проведения практических занятий и тестирования, а также выполнения обучающимися индивидуальных заданий и самостоятельных работ.

Результаты обучения	Формы и методы контроля и оценки
(освоенные умения) Освоенные умения:	результатов обучения
- решать прикладные задачи в области профессиональной деятельности.	Экспертная оценка выполнения практической работы. Контрольная работа. Экспертная оценка выполнения самостоятельной работы. Дифференцированный зачет.
Усвоенные знания:	
- значение математики в профессиональной деятельности и при освоении ППССЗ;	Экспертная оценка выполнения практической работы. Контрольная работа. Экспертная оценка выполнения самостоятельной работы. Дифференцированный зачет.
- основные математические методы решения прикладных задач в области профессиональной деятельности; - основные понятия и	Экспертная оценка выполнения практической работы. Контрольная работа. Экспертная оценка выполнения самостоятельной работы. Дифференцированный зачет. Экспертная оценка выполнения
методы математического анализа, линейной алгебры, теории комплексных чисел, теории вероятностей и математической статистики;	практической работы. Контрольная работа. Экспертная оценка выполнения самостоятельной работы. Дифференцированный зачет.

- основы интегрального и	Экспертная оценка выполнения
дифференциального	практической работы. Контрольная
исчисления.	работа.
	Экспертная оценка выполнения
	самостоятельной работы.
	Дифференцированный зачет.

Контроль и оценка освоения учебной дисциплины по разделам (темам)

Контроль и оценка освоения учеоной дисциплины по разделам (темам)			
Раздел / тема учебной	Форма текущего	Коды формируемых	
дисциплины	контроля	ПК и ОК	
Раздел 1. Математический анализ / Тема 1.1. Дифференциальное и интегральное исчисление	Устный опрос Контрольная работа Проверочная работа	OK 1;OK 2 OK 4; ΠΚ 1.7	
Раздел 1 / Тема 1.2. Обыкновенные дифференциальные уравнения	Контрольная работа Проверочная работа	OK 1;OK 2 OK 4; ΠΚ 1.7	
Раздел 1 / Тема 1.3. Ряды	Устный опрос Контрольная работа	ОК 1;ОК 2 ОК 4; ПК 1.7	
Раздел 2. Компексные числа / Тема 2.1. Комплексные чи алгебраической форме	Устный опрос	OK 1;OK 2 OK 4; ΠK 1.7	
Раздел 2. Компексиы 2. Компексиы 2. Комп сла в лексные чи тригонометрической форме	Устный опрос	OK 1;OK 2 OK 4; ΠK 1.7	
Раздел 2. Комплексные чила / Тема 2.3 Показательная форма комплексного числа	Устный опрос	OK 1;OK 2 OK 4; IIK 1.7	
Раздел 3. Элементы линейной алгебры / Тема 3.1. Матрицы, определители матриц	Устный опрос	OK 1;OK 2 OK 4; ПК 1.7	
Раздел 3. Элементы линейной алгебры / Тема 3.2. Обратная матрица	Устный опрос Контрольная работа	ОК 1;ОК 2 ОК 4; ПК 1.7	

Раздел 3. Элементы линейной алгебры/ Тема 3.3. Системы линейных уравнений	Письменный опрос Контрольная работа	OK 1;OK 2 OK 4; ПК 1.7
Раздел 4. Осно етной вы дискр математики/ Тема 4.1. Множества и отношения. Свойства отношений. Операции над множествами	Письменный опрос Контрольная работа	OK 1;OK 2 OK 4; ПК 1.7
Раздел 5. Основы теори вероятностей и математической статистики/ Тема 5.1. Основы теории вероятностей	Контрольная работа	OK 1;OK 2 OK 4; ПК 1.7

Критерии и шкала оценивания в результате изучения дисциплины при проведении текущего контроля и промежуточной аттестации

Шкала оценивания	Критерии оценки
«отлично»	Обучающийся правильно ответил на
	теоретические вопросы. Показал отличные знания
	в рамках учебного материала. Правильно
	выполнил практические задания. Показал
	отличные
	умения и владения навыками применения
	полученных знаний и умений при решении задач в
	рамках учебного материала.
«хорошо»	Обучающийся с небольшими неточностями
	ответил на теоретические вопросы. Показал
	хорошие знания в рамках учебного материала. С
	небольшими неточностями выполнил
	практические задания. Показал хорошие умения и
	владения навыками применения полученных
	знаний и умений при решении задач в рамках
	учебного материала.
«удовлетворительно»	Обучающийся с существенными неточностями
	ответил на теоретические вопросы. Показал
	удовлетворительные знания в рамках учебного
	материала. С существенными неточностями
	выполнил практические задания. Показал
	удовлетворительные умения и владения навыками
	применения полученных знаний и умений при
	решении задач в рамках учебного материала.
	Допустил много неточностей при ответе на

	дополнительные вопросы.
««неудовлетворительно»	Обучающийся при ответе на теоретические
	вопросы и при
	выполнении практических заданий
	продемонстрировал
	недостаточный уровень знаний и умений при
	решении задач в рамках учебного материала. При
	ответах на дополнительные
	вопросы было допущено множество неправильных
	ответов.

3. ТЕКУЩИЙ КОНТРОЛЬ ОБЯЗАТЕЛЬНЫЕ КОНТРОЛЬНЫЕ ЗАДАНИЯ

(вопросы и тесты)

Тема 1.1. Дифференциальное и интегральное исчисление

ВОПРОСЫ ПО ТЕМЕ: «ФУНКЦИИ ОДНОЙ НЕЗАВИСИМОЙ ПЕРЕМЕННОЙ. ПРЕДЕЛЫ»

- 1. Что значит «задать функцию»? Укажите три объекта.
- 2. Что такое независимая и зависимая переменные?
- 3. Какие вы знаете способы задания функции одной переменной?
- 4. Приведите пример функции одной переменной.
- 5. Что такое предел функции?
- 6. На каком языке наиболее часто формулируют определение предела функции?
- 7. В чем состоит первое свойство предела функции?
- 8. Назовите второе свойство предела функции.
- 9. В чем состоит третье свойство предела функции?
- 10. Назовите четвертое и пятое свойство предела функции.

Контрольная работа

Вариант 1

1. Найти пределы функций

a)
$$\lim_{x \to 3} \frac{3 - x}{3 - \sqrt{x + 6}}$$
, 6) $\lim_{x \to \infty} \left(1 + \frac{4}{x}\right)^{3x}$, B) $\lim_{x \to 0} \frac{\sin 5x}{\sin 20x}$.

2. Найдите предел функции, используя правило Лопиталя

$$\lim_{x \to 16} \frac{\sqrt{x} - 4}{\ln(x - 15)}$$

- 3. Найдите производную функции $y = e^{x^2 \frac{3}{4}} \cdot \arccos x$ в точке $x_0 = \frac{\sqrt{3}}{2}$.
- 4. Напишите уравнение касательной к графику функции $f(x) = \sin^2 4x$ в точке $x_0 = \frac{\pi}{16}$.
- 5. Найдите точки перегиба и промежутки выпуклости графика функции

$$y = \frac{x^4}{6} - 3x^2$$
.

6. Вычислите интеграл

$$\int_{0}^{1} (2x^3 - 1)^4 \cdot x^2 dx.$$

7. Найдите объем тела, полученного вращением вокруг оси абсцисс

криволинейной трапеции, ограниченной линиями: y=0, y=3, y=5 и $y=\sqrt{x-2}.$

Вариант 2

1. Найти пределы функций

a)
$$\lim_{x \to 4} \frac{4-x}{4-\sqrt{x+12}}$$
, 6) $\lim_{x \to \infty} \left(1+\frac{3}{x}\right)^{4x}$, B) $\lim_{x \to 0} \frac{\sin 6x}{\sin 18x}$.

2. Найдите предел функции, используя правило Лопиталя

$$\lim_{x \to 25} \frac{\sqrt{x} - 5}{\ln(x - 24)}$$

- 3. Найдите производную функции $y = e^{x^2 \frac{1}{2}} \cdot \arcsin x$ в точке $x_0 = \frac{\sqrt{2}}{2}$.
- 4. Напишите уравнение касательной к графику функции $f(x) = \cos^2 6x$ в точке $x_0 = \frac{\pi}{24}$.
- 5. Найдите точки перегиба и промежутки выпуклости графика функции

$$y = \frac{x^4}{3} - 6x^2$$
.

6. Вычислите интеграл

$$\int\limits_0^1 \left(3x^4+1\right)^2 \cdot x^3 dx.$$

7. Найдите объем тела, полученного вращением вокруг оси абсцисс

криволинейной трапеции, ограниченной линиями: y=0, x=4, x=6 и _____

$$y = \sqrt{x - 3}$$
.

ОТВЕТЫ

№ Задания	1 вариант	2 вариант
1 a)	6	8

1 6)	e^{12}	e^{12}
1 в)	$\frac{1}{4}$	$\frac{1}{3}$
2	1 8	$\frac{1}{10}$
3	$\frac{\sqrt{3}\pi}{6}-2$	$\frac{\sqrt{2}\pi}{4} + \sqrt{2}$
4	$y = 4x + \frac{1}{2} - \frac{\pi}{4}$	$y = -6x + \frac{1}{2} + \frac{\pi}{4}$
5		$\left(-\sqrt{3};-15\right)$ и $\left(\sqrt{3};-15\right)$ координаты точек перегиба $\left(-\infty;-\sqrt{3}\right)$ и $\left(\sqrt{3};+\infty\right)$ промежутки выпуклости вниз $\left(-\sqrt{3};\sqrt{3}\right)$ промежуток выпуклости вверх
6	$\frac{1}{15}$	$\frac{7}{4}$
7	4π	4π

Время выполнения контрольной работы 1ч 30 мин

Критерий оценки:

Количество	Оценка
правильных	
ответов	

95-100%	«5»
96-90%	«4»
71-80%	«3»
81% и меньше	«2»

Проверочная работа по теме « Пределы. Непрерывность функций». Вариант 1

1. Вычислить предел функции:

$$\lim_{x \to 3} \frac{x^2 - 9}{x^2 - 8x + 15}.$$

2. Вычислить предел функции:

$$\lim_{x\to 2}\frac{x+5}{3x-6}.$$

3. Вычислить предел функции:

$$\lim_{x \to 0} \frac{\sin 17x}{\sin 12x}$$

4. Вычислить предел функции:

$$\lim_{x\to\infty} \left(1 + \frac{7}{x}\right)^{\frac{x}{3}}.$$

Вариант 2

1. Вычислить предел функции: $\lim_{x\to 4} \frac{x^2+x-20}{x^2-16}.$

$$\lim_{x \to 4} \frac{x^2 + x - 20}{x^2 - 16}.$$

2. Вычислить предел функции:

$$\lim_{x\to 2}\frac{3x+6}{2x-4}.$$

3. Вычислить предел функции:

$$\lim_{x \to 0} \frac{\sin 7x}{\sin 13x}$$

4. Вычислить предел функции:

$$\lim_{x\to\infty} \left(1 + \frac{12}{x}\right)^{\frac{x}{4}}.$$

Вариант 3

1. Вычислить предел функции: $\lim_{x\to 7} \frac{x^2-49}{x^2-5x-14}.$

$$\lim_{x \to 7} \frac{x^2 - 49}{x^2 - 5x - 14}.$$

2. Вычислить предел функции: $\lim_{x\to 3} \frac{x^2+4}{2x-6}$.

$$\lim_{x\to 3} \frac{x^2+4}{2x-6}.$$

3. Вычислить предел функции:

$$\lim_{x\to 0}\frac{\sin 9x}{\sin 4x}.$$

4. Вычислить предел функции:

$$\lim_{x\to\infty} \left(1 + \frac{15}{x}\right)^{\frac{x}{5}}.$$

Вариант 4

1. Вычислить предел функции:

$$\lim_{x \to 5} \frac{x^2 - 12x + 35}{x^2 - 25}.$$

2. Вычислить предел функции:

$$\lim_{x \to 5} \frac{x^2 - 1}{2x - 10}$$

3. Вычислить предел функции:

$$\lim_{x\to 0} \frac{\sin 8x}{\sin 19x}.$$

4. Вычислить предел функции:

$$\lim_{x\to\infty} \left(1+\frac{4}{x}\right)^{2x}.$$

Вариант 5

1. Вычислить предел функции: $\lim_{x\to 6} \frac{x^2 - 3x - 18}{x^2 - 36}.$

$$\lim_{x\to 6} \frac{x^2 - 3x - 18}{x^2 - 36}.$$

2. Вычислить предел функции:

$$\lim_{x\to 4} \frac{2x-3}{3x-12}$$

3. Вычислить предел функции:

$$\lim_{x \to 0} \frac{\sin 5x}{\sin 14x}$$

4. Вычислить предел функции:

$$\lim_{x \to \infty} \left(1 + \frac{10}{x}\right)^{3x}.$$

Вариант 6

1. Вычислить предел функции:

$$\lim_{x \to 9} \frac{x^2 - 81}{x^2 - 11x + 18}.$$

2. Вычислить предел функции:

$$\lim_{x\to 6}\frac{3x-5}{2x-12}.$$

3. Вычислить предел функции:

$$\lim_{x\to 0}\frac{\sin 19x}{\sin 3x}.$$

4. Вычислить предел функции:

$$\lim_{x\to\infty} \left(1 + \frac{14}{x}\right)^{2x}.$$

Время на выполнение: 40 мин.

Критерии оценивания:

«отлично» - верно выполнено 4 задания;

«хорошо» - верно выполнено 3 задания; «удовлетворительно» - верно выполнено 2 задания; «неудовлетворительно» - верно выполнено менее 2 заданий.

Проверочная работа по теме « Производная, физический смысл».

Вариант 1

- 1. Найти производную функции $y = \sin^6(4x^3 2)$.
- 2. Найти производную третьего порядка функции $y = 3x^4 + \cos 5x$.
- 3. Написать уравнение касательной к графику функции $f(x) = \frac{3}{x}$ в точке с абсциссой $x_0 = -1$, $x_0 = 1$.
- 4. Материальная точка движется по закону $x(t) = -\frac{1}{3}t^3 + 2t^2 + 5t$. Найти скорость и ускорение в момент времени t=5 с. (Перемещение

измеряется в метрах.) **Вариант 2**

- 1. Найти производную функции $y = \cos^4(6x^2 + 9)$.
- 2. Найти производную третьего порядка функции $y = 2x^5 \sin 3x$.
- 3. Написать уравнение касательной к графику функции $f(x) = 2x x^2$ в точке с абсциссой $x_0 = 0$, $x_0 = 2$.
- 4. Материальная точка движется по закону $x(t) = t^3 4t^2$. Найти скорость и ускорение в момент времени t=5 с. (Перемещение измеряется в

метрах.) Вариант 3

- 1. Найти производную функции $y = tg^5(3x^4 13)$.
- 2. Найти производную третьего порядка функции $y = 4x^3 e^{5x}$.
- 3. Написать уравнение касательной к графику функции $f(x) = x^2 + 1$ в точке с абсциссой $x_0 = 0$, $x_0 = 1$.
- 4. Материальная точка движется по закону $x(t) = \frac{1}{4}t^4 + t^2$. Найти скорость

и ускорение в момент времени t=5 с. (Перемещение измеряется в

метрах.) Вариант 4

- 1. Найти производную функции $y = ctg^4(5x^3 + 6)$.
- 2. Найти производную третьего порядка функции $y = 5x^4 \cos 4x$.
- 3. Написать уравнение касательной к графику функции $f(x) = x^3 1$ в точке с абсциссой $x_0 = -1$, $x_0 = 2$.
- 4. Материальная точка движется по закону $x(t) = t^4 2t$. Найти скорость и ускорение в момент времени t=5 с. (Перемещение измеряется в метрах.)

Вариант 5

1. Найти производную функции $y = \arcsin^3 7x^2$.

- 2. Найти производную третьего порядка функции $y = 4x^4 + \sin 2x$.
- 3. Написать уравнение касательной к графику функции f(x) = tgx в точке с абсциссой $x_0 = \frac{\pi}{4}$, $x_0 = \frac{\pi}{3}$.
- 4. Материальная точка движется по закону $x(t) = 2t^3 8$. Найти скорость и ускорение в момент времени t=5 с. (Перемещение измеряется в метрах.)

Вариант 6

- 1. Найти производную функции $y = arctg^6 5x^4$.
- 2. Найти производную третьего порядка функции $y = 6x^5 + e^{4x}$.
- 3. Написать уравнение касательной к графику функции $f(x) = 1 + \cos x$ в точке с абсциссой $x_0 = 0$, $x = \frac{\pi}{2}$.
- 4. Материальная точка движется по закону $x(t) = t^4 + 2t$. Найти скорость и ускорение в момент времени t=5 с. (Перемещение измеряется в метрах.)

Время на выполнение: 40 мин.

Критерии оценивания:

«отлично» - верно выполнено 4 задания;

«хорошо» - верно выполнено 3 задания;

«удовлетворительно» - верно выполнено 2 задания;

«неудовлетворительно» - верно выполнено менее 2 заданий.

работа Проверочная «Неопределенный ПО теме интеграл. Непосредственное интегрирование. Замена переменной».

Вариант 1

Найти неопределенные интегралы методом непосредственного

интегрирования (для
$$1.5$$
). $\int_{0.5}^{1.5} |\cos x - 3x^2| + \frac{1}{1.5} |dx|$

$$2. \qquad \int \frac{3x^8 - x^5 + x^4}{x^5} dx \; .$$

$$3. \qquad \int (6^x \cdot 3^{2x} - 4) dx.$$

$$\int \frac{dx}{1 + 16x^2}.$$

Найти неопределенные интегралы методом подстановки (для № 6-8).

6.
$$\int (8x-4)^3 dx$$
.

7.
$$\int \frac{12x^3 + 5}{3x^4 + 5x - 3} dx .$$

8. $\int x^5 \cdot e^{x^6} dx$. 9. Найти неопределенный интеграл методом интегрирования по частям: $\int (x+5)\cos x dx$.

Вариант 2

Найти неопределенные интегралы методом непосредственного

интегрирования (для
$$N_{\underline{0}}$$
 1-5).
1. $\int_{0}^{1} 6\sin x + 4x^3 - \frac{1}{x} dx$

$$2. \int \frac{x^9 - 3x^7 + 2x^6}{x^7} dx .$$

3.
$$\iint_{1}^{7^{x} \cdot 2^{2x} + 5} dx.$$
4.
$$\iint_{1}^{1} \frac{1}{1 + x^{2}} + \frac{1}{\sin^{2} x} dx.$$

$$5. \quad \int \frac{\Box dx}{\sqrt{4-9x^2}}.$$

Найти неопределенные интегралы методом подстановки (для № 6-8).

6.
$$\int (7x+5)^4 dx$$
.

7.
$$\int \frac{6x^3 - 3x + dx}{8} dx$$
.

8 $\int x^7 \cdot e^{x^8} dx$. 9 Найти неопределенный интеграл методом интегрирования частям: $\int (x-2)\sin x dx$.

Время на выполнение: 45 мин.

Критерии оценивания

«отлично» - 85%-100% правильных ответов, «хорошо»- 65%-85% правильных ответов,

«удовлетворительно» - 50% - 65% правильных ответов,

«неудовлетворительно»- менее 50% правильных ответов

Проверочная работа по теме «Определенный интеграл. Вычисление определенного интеграла. Геометрический смысл определенного интеграла».

Вариант 1

- 1. Вычислить определенный интеграл: $\int_{0}^{2} (4x^{2} + x 3) dx$.
- 2. Вычислить определенный интеграл методом подстановки: $\int\limits_{3}^{3} (2x-1)^3 dx \ .$
- 3. Вычислить, предварительно сделав рисунок, площадь фигуры, ограниченной линиями: $y = -x^2 + 4$, y = 0, x = -2, x = 2.
- 4. Найти объем тела, полученного при вращении вокруг оси абсцисс криволинейной трапеции, ограниченной линиями: $y = \sqrt{x}, y = 0, x = 1, x = 4$.
- 5. Скорость движения точки изменяется по закону $v = 3t^2 + 2t + 1$ (м/с). Найти путь S, пройденный точкой за 10 с от начала движения.

Вариант 2

- 1. Вычислить определенный интеграл: $\int_{0}^{3} (2x^{2} x + 4) dx$.
- 2. Вычислить определенный интеграл методом подстановки: $\int\limits_{0}^{1}(3x+1)^{4}dx\;.$
- 3. Вычислить, предварительно сделав рисунок, площадь фигуры, ограниченной линиями: $y = -x^2 + 1$, y = 0, x = -1, x = 1.
- 4. Найти объем тела, полученного при вращении вокруг оси абсцисс криволинейной трапеции, ограниченной линиями: $y = \sqrt{x}, y = 0, x = 0, x = 1.$
- 5. Скорость движения точки изменяется по закону $v = 9t^2 8t$ (м/с). Найти путь S, пройденный точкой за четвертую секунду.

Время на выполнение: 45 мин.

Критерии оценивания

«отлично» - 85%-100% правильных ответов, «хорошо»- 65%-85% правильных ответов,

«удовлетворительно»- 50%-65% правильных ответов,

«неудовлетворительно»- менее 50% правильных ответов

Тема 1.2. Обыкновенные дифференциальные уравнения

Проверочная работа Вариант 1

1. Являются ЛИ функции данные решениями данных дифференциальных уравнений (для № 1-2). 1. $y = c_1 e^{-5x} + c_2 e^x$, y' + 4y' - 5y = 0.

1.
$$y = c e^{-5x} + c e^{x}$$
, $y' + 4y' - 5y = 0$.

2.
$$y = \frac{8}{x}$$
, $y' = -\frac{1}{8}y^2$.

2. Решить следующие дифференциальные уравнения первого и второго порядка (для № 3-6).

3.
$$y' = \frac{1}{\cos^2 x} + x^4$$
.

4.
$$y' = \frac{x-1}{y^2}$$
.

5.
$$y' - 3y + 5 = 0$$
.

Вариант 2

Являются ЛИ данные функции решениями данных дифференциальных уравнений (для № 1-2).

1.
$$y = c_1 e^x + c_2 x e^x$$
, $y' + 2y' + y = 0$

2.
$$y = e^{4x} + 2$$
, $y' = 4y$

2. Решить следующие дифференциальные уравнения первого и второго порядка (для № 3-6).

3.
$$y' = -6y$$

4.
$$y' = \frac{y}{\sqrt{1-x^2}}$$

5.
$$y' - 7y' + 10y = 0$$

Вариант 3

1. Являются ЛИ данные функции решениями данных дифференциальных уравнений (для № 1-4).

1.
$$y = c_1 e^{-2x} + c_2 x e^{-2x}$$
, $y' + 4y' + 4y = 0$.

2.
$$y = e^{3x} - 5$$
, $y' = 3y + 15$.

2. Решить следующие дифференциальные уравнения первого и второго порядка (для № 6-12).

3.
$$y' = \frac{1}{\sqrt{1-x^2}} - x^7$$
.

4.
$$y' = \frac{2x}{v^2}$$
.

5.
$$y' + 8y - 3 = 0$$
.

Вариант 4

1. Являются ЛИ функции решениями данные данных дифференциальных уравнений (для № 1-2). 1. $y = c_1 e^{3x} + c_2 e^x$, y' - y' - 6y = 0

2.
$$y = \frac{5}{x}$$
, $y' = -y^2$

2. Решить следующие дифференциальные уравнения первого и второго порядка (для № 6-12).

3.
$$y' = 8y$$

4.
$$y' = \frac{y}{1+x^2}$$

5.
$$y' + 8y' + 16y = 0$$

Время на выполнение: 45 мин. **Критерии оценивания**

«отлично» - 85%-100% правильных ответов, «хорошо»- 65%-85% правильных ответов,

«удовлетворительно» - 50% - 65% правильных ответов,

«неудовлетворительно»- менее 50% правильных ответов

Контрольная работа по теме

«Решение однородных дифференциальных уравнений».

Вариант №1.

Решите дифференциальные уравнения и найдите частные решения (частные интегралы), удовлетворяющие данным условиям:

$$(x+1)^3 dy$$
 - $(y-2)^2 dx = 0$, $y = 0$ при $x = 0$.

$$y \cos x \ln y = y$$
, $y = 1$ при $x = \pi$.

$$3e^{x}tg\ y\ cos^{2}y\ dx$$
 - $(1+e^{x})dy=0$, $y=\pi/4$ при $x=0$.

Вариант №2.

Решите дифференциальные уравнения и найдите частные решения (частные интегралы), удовлетворяющие данным условиям:

$$(\sqrt{xy} + \sqrt{x})y - y = 0, y = 1$$
 при $x = 1$.

$$(1+x^2)y^3dx$$
 - $(y^2$ - $1)x^3dy = 0$, $y = 1$ при $x = 1$.

$$(xy^2 + x) dx + (x^2y - y)dx = 0, y = 1 \text{ при } x = 0.$$

Вариант №3.

Решите дифференциальные уравнения и найдите частные решения (частные интегралы), удовлетворяющие данным условиям:

$$ydx$$
, $+ ctgxdy = 0$, $y = -1$ при $x = \pi/3$.
 $tg \ x \sin^2 y \ dx + \cos^2 x ctg \ y \ dy = 0$, $y = \pi/4$ при $x = \pi/4$.
 $(xy^2 + y^2) \ dx + (x^2 - x^2y) \ dy = 0$, $y = 1$ при $x = 1$.

Норма оценки:

Количество	Оценка
правильных ответов	
95-100%	«5»
96-90%	«4»
71-80%	«3»
81% и меньше	«2»

Время выполнения контрольной работы 1ч 30 мин

Тема 1.3. Ряды

ВОПРОСЫ ПО ТЕМЕ: «РЯДЫ. ОПРЕДЕЛЕНИЕ СХОДИМОСТИ РЯДОВ ПО ПРИЗНАКУ ДАЛАМБЕРА»

- 1. Что такое числовой ряд?
- 2. Какой элемент называют общим членом числового ряда?
- 3. Какие ряды называются сходящимися?
- 4. Какие ряды называются расходящимися?
- **5.** В чем состоит признак Даламбера сходимости рядов? Что такое частичная сумма числового ряда?

Контрольная работа по теме

«Определение сходимости рядов по признаку Даламбера».

Вариант №1.

Задание 1. Исследуйте числовой ряд
$$\sum_{k=1}^{\infty} \frac{2k+1}{2^k}$$

на сходимость по признаку Даламбера. Запишите пять первых членов ряда.

$$\sum_{k=1}^{\infty} \frac{k^k}{k!}$$
. Задание 2. Проверьте расходимость числового ряда

Вариант №2.

Задание 1. Исследуйте числовой ряд
$$\sum_{k=3}^{\infty} \frac{3k-1}{3^k}$$

на сходимость по признаку Даламбера. Запишите пять первых членов ряда.

Задание 2. Проверьте расходимость числового ряда
$$\sum_{n=1}^{\infty} \frac{n^n}{n!}$$
.

Вариант №3.

Задание 1. Исследуйте числовой ряд
$$\sum_{k=0}^{\infty} \frac{4k+1}{4^k}$$

на сходимость по признаку Даламбера. Запишите пять первых членов ряда.

$$\sum_{k=1}^{\infty} \frac{k^x}{k!}$$
 Задание 2. Проверьте расходимость числового ряда

Норма оценки:

Количество	Оценка
правильных ответов	
95-100%	«5»
96-90%	«4»
71-80%	«3»
81% и меньше	«2»

Время выполнения контрольной работы 45 мин

ВОПРОСЫ ПО ТЕМЕ: «РЯДЫ. ОПРЕДЕЛЕНИЕ СХОДИМОСТИ ЗНАКОПЕРЕМЕННЫХ РЯДОВ»

- 1. Какие ряды называются знакопеременными рядами?
- 2. Какие ряды называются знакоположительными рядами?
- 3. Какие ряды называются знакочередующимися рядами?
- 4. В чем состоит признак Лейбница сходимости рядов?
- 5. Справедлива ли теорема Лейбница если условие $u_n > u_{n+1}$ выполняется, начиная с некоторого номера N?
- 6. Является ли условие $u_n > u_{n+1}$ сходимости ряда необходимым?

7. В чем состоит достаточный признак сходимости знакопеременного ряда или признак абсолютной сходимости?

Верно ли утверждение: « Если данный ряд сходится, то ряд, составленный из абсолютных величин его членов, может и расходиться»?

Тема 2.1. Комплексные числа в алгебраической форме

ВОПРОСЫ ПО ТЕМЕ:

«КОМПЛЕКСНЫЕ ЧИСЛА В АЛГЕБРАИЧЕСКОЙ ФОРМЕ. ПРЕДСТАВЛЕНИЕ КОМПЛЕКСНЫХ ЧИСЕЛ А АЛГЕБРАИЧЕСКОЙ ФОРМЕ»

- 1. Что такое мнимая единица?
- 2. Какой буквой обозначается мнимая единица?
- 3. Верно ли, что символ *i* удовлетворяет условию $i^2 = -1$?
- 4. Что называется комплексным числом?
- 5. Что такое действительная часть комплексного числа?
- 6. Что такое мнимая часть комплексного числа?
- 7. Какой буквой чаще всего обозначается комплексное число?
- 8. Какой буквой принято обозначать множество комплексных чисел?
- 9. Как называется запись комплексного числа в виде z = a + bi?
- 10. Что такое модуль комплексного числа?

ВОПРОСЫ ПО ТЕМЕ: «ДЕЙСТВИЯ НАД КОМПЛЕКСНЫМИ ЧИСЛАМИ В АЛГЕБРАИЧЕСКОЙ ФОРМЕ»

- 1. Что называется суммой двух комплексных чисел?
- 2. Как найти разность двух комплексных чисел?
- 3. Что называется произведением двух комплексных чисел?
- 4. Как найти частное двух комплексных чисел?
- 5. Как вычислить аргумент комплексного числа?

Тема 2.2 Комплексные числа в тригонометрической форме

ВОПРОСЫ ПО ТЕМЕ: «ТРИГОНОМЕТРИЧЕСКАЯ ФОРМА КОМПЛЕКСНОГО ЧИСЛА. ПОКАЗАТЕЛЬНАЯ ФОРМА КОМПЛЕКСНОГО ЧИСЛА»

- 1. Что называется тригонометрической формой записи комплексного числа?
- 2. Как перейти от алгебраической формы к тригонометрической?
- 3. Как перейти от тригонометрической формы к алгебраической?
- 4. Что называется показательной формой записи комплексного числа?
- 5. Как перейти от алгебраической формы к показательной?

- 6. Как перейти от показательной формы к алгебраической?
- 7. Как выполнять действия в тригонометрической форме?
- 8. Как выполнять действия в показательной форме?

Тема 3.1. Матрицы, определители матриц

ВОПРОСЫ ПО ТЕМЕ: «МАТРИЦЫ, ОПРЕДЕЛИТЕЛИ МАТРИЦ. ВЫЧИСЛЕНИЕ ОПРЕДЕЛИТЕЛЕЙ МАТРИЦЫ»

- 1. Что такое матрица?
- 2. Где в математике используют матрицы?
- 3. Какая матрица называется квадратной?
- 4. Что такое транспонированная матрица?
- 5. Какая матрица называется единичной, нулевой?
- 6. Что такое диагональная матрица?
- 7. Что такое порядок или размер матрицы?
- 8. Что такое определитель матрицы?
- 9. Как вычислить определитель квадратной матрицы 2 порядка?
- 10.Сколько способов существует для вычисления определителя матрицы 3 порядка?

Тема 3.2. Обратная матрица

ВОПРОСЫ ПО ТЕМЕ: «ОБРАТНАЯ МАТРИЦА. ВЫЧИСЛЕНИЕ ОБРАТНЫХ МАТРИЦ»

- 1. Какая матрица называется обратной?
- 2. Как обозначается обратная матрица?
- 3. Что такое взаимно обратные матрицы?
- 4. Верно ли утверждение: «Если определитель матрицы равен нулю, то обратная к ней не существует»?
- 5. Верно ли утверждение: «Если обратная матрица существует, то она единственна».

Контрольная работа

1 вариант

1. Найдите произведение матриц АВ

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}, B = \begin{pmatrix} -1 & 2 \\ 1 & -3 \\ 4 & 5 \end{pmatrix}.$$

2. Вычислите определитель
$$\begin{vmatrix} 3 & 3 & 2 \\ 5 & 3 & -2 \\ 1 & -2 & 1 \end{vmatrix}$$
.

4 Найдите матрицу, обратную к данной:
$$A = \begin{bmatrix} 2 & 1 & 1 \\ 3 & -1 & 2 \\ 2 & 4 & -5 \end{bmatrix}$$
.

2 вариант

1. Найдите произведение матриц АВ

$$A = \begin{pmatrix} 4 & 5 & 6 \\ 1 & 2 & 3 \end{pmatrix}, B = \begin{pmatrix} -1 & 2 \\ 1 & -3 \\ 4 & 5 \end{pmatrix}.$$

4 Найдите матрицу, обратную к данной:
$$A = \begin{pmatrix} 2 & 1 & 1 \\ 3 & 1 & -2 \\ 2 & -4 & 5 \end{pmatrix}$$
.

3 вариант

1. Найдите произведение матриц АВ

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}, B = \begin{pmatrix} -2 & 1 \\ 3 & -1 \\ 5 & 4 \end{pmatrix}.$$

4 Найдите матрицу, обратную
$$\kappa$$
 данной: $A = \begin{pmatrix} 2 & 1 & 1 \\ 3 & 2 & -1 \\ 2 & -5 & 4 \end{pmatrix}$.

4 вариант

1. Найдите произведение матриц АВ

$$A = \begin{pmatrix} 4 & 5 & 6 \\ 1 & 2 & 3 \end{pmatrix}, B = \begin{pmatrix} -2 & 1 \\ 3 & -1 \\ 5 & 4 \end{pmatrix}.$$

$$\begin{bmatrix} 2. \ B$$
ычислите определитель $\begin{bmatrix} 4 & 1 & 2 \\ 1 & 3 & -5 \\ 8 & -1 & 7 \end{bmatrix}$.

4 Найдите матрицу, обратную к данной:
$$A = \begin{pmatrix} 2 & 1 & 1 \\ 3 & -2 & 1 \\ 2 & 5 & -4 \end{pmatrix}$$
.

ОТВЕТЫ

<u>№</u> задания	1вариант	2 вариант	3 вариант	4 вариант
1	$ \begin{pmatrix} 13 & 11 \\ 25 & 23 \end{pmatrix} $	$ \begin{pmatrix} 25 & 23 \\ 13 & 11 \end{pmatrix} $	(19 11) (37 23)	$ \begin{pmatrix} 37 & 23 \\ (19 & 11) \end{pmatrix} $
2	- 50	33	50	- 33

$$3 \quad \begin{vmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ -9 & 3 & 9 \\ 19 & 4 & 1 \\ \hline 27 & -9 & -\frac{5}{27} \end{vmatrix} \begin{vmatrix} \begin{pmatrix} 1 & 3 & 1 \\ 13 & 13 & 13 \\ \hline 19 & 8 & 7 \\ \hline 39 & -\frac{39}{39} & \frac{1}{39} \end{vmatrix} \begin{vmatrix} \begin{pmatrix} 1 & 1 & 1 \\ -9 & 3 & 9 \\ \hline 14 & 2 & 5 \\ \hline 27 & -\frac{9}{9} & -\frac{1}{27} \end{vmatrix} \begin{vmatrix} \begin{pmatrix} 1 & 3 & 1 \\ 13 & 13 & 13 \\ \hline 14 & 2 & 5 \\ \hline 27 & -\frac{9}{9} & -\frac{1}{27} \end{vmatrix} \begin{vmatrix} \begin{pmatrix} 1 & 3 & 1 \\ 13 & 13 & 13 \\ \hline 27 & -\frac{9}{9} & -\frac{1}{27} \end{vmatrix} \begin{vmatrix} \begin{pmatrix} 1 & 3 & 1 \\ 13 & 13 & 13 \\ \hline 27 & -\frac{9}{9} & -\frac{1}{27} \end{vmatrix} \begin{vmatrix} \begin{pmatrix} 1 & 3 & 1 \\ 14 & 10 & 1 \\ \hline 39 & 39 & 39 \\ \hline 19 & 8 & 7 \\ 39 & -\frac{39}{39} & -\frac{39}{39} \end{vmatrix}$$

Время выполнения контрольной работы 1ч 30 мин

Норма оценки:

Количество	Оценка
правильных	
ответов	
95-100%	«5»
96-90%	«4»
71-80%	«3»
81% и меньше	«2»

Тема 3.3. Системы линейных уравнений

ВОПРОСЫ ПО ТЕМЕ: «РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ МАТРИЧНЫМ МЕТОДОМ»

- 1. Какая система называется системой m линейных уравнений с n неизвестными?
- 2. Какая система линейных уравнений называется совместимой?
- 3. Какая система линейных уравнений называется несовместимой?.
- 4. Что такое матрица системы?
- 5. Как называются числа, стоящие в правых частях уравнений, $b_1, ..., b_m$?
- 6. Что называется решением системы линейных уравнений?
- 7. Какие три ситуации могут возникнуть при нахождении решений системы.?
- 8. В чем состоит правило Крамера?
- 9. В чем состоит Метод Гаусса?
- 10. Какие преобразования относятся к элементарным преобразованиям матрицы?

Контрольная работа по математике

Вариант 1

1. Найти произведение матриц АВС, если

$$A = \begin{pmatrix} 2 & 5 \\ 3 & 6 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & -3 \\ -2 & 3 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 0 \\ 4 & 1 \end{pmatrix}.$$

2. Решить матричное уравнение

$$\begin{pmatrix} 2 & 3 \\ 6 & 7 \end{pmatrix} * X = \begin{pmatrix} 23 \\ 59 \end{pmatrix}.$$

3. Решить систему уравнений по формулам Крамера

$$\begin{cases} 3x - 8y + 6z = 5, \\ -5x + 4y + 3z = 12, \\ 7x + 2y - 5z = -4. \end{cases}$$

- 4. Составить уравнения двух прямых, проходящих через точку A(3; 2), параллельно и перпендикулярно прямой 4x 3y + 1 = 0.
- 5. Построить область решений системы неравенств

$$\begin{cases}
-x+y \le 3, \\
-x+3y \ge -6, \\
x+y \le 10.
\end{cases}$$

Определить координаты угловых точек области решений.

6. Используя графический метод решения задач линейного программирования найти наибольшее значение линейной целевой функции F(x; y) = 3x + 2y в области, заданной ограничениями

$$\begin{cases} x + 2y \le 10, \\ -x + y \le 2, \\ x \le 6; \\ x \ge 0; y \ge 0. \end{cases}$$

Контрольная работа по математике

Вариант 2

1. Найти произведение матриц АВС, если

$$A = \begin{pmatrix} 3 & 6 \\ 4 & 7 \end{pmatrix}, \quad B = \begin{pmatrix} -2 & 3 \\ 2 & -3 \end{pmatrix}, \quad C = \begin{pmatrix} 0 & 2 \\ 2 & 1 \end{pmatrix}.$$

2. Решить матричное уравнение

$$\begin{pmatrix} 4 & 5 \\ 2 & 3 \end{pmatrix} * X = \begin{pmatrix} 59 \\ 33 \end{pmatrix}.$$

3. Решить систему уравнений по формулам Крамера

$$\begin{cases} 4x - 2 y + z = 12, \\ -7x + 9 y + 3z = -6, \\ 3x + 4 y - 2z = 9. \end{cases}$$

- 4. Составить уравнения двух прямых, проходящих через точку A(5; 1), параллельно и перпендикулярно прямой 2x 5y + 3 = 0.
- 5. Построить область решений системы неравенств $x + y \ge -3$,

$$\begin{cases} x + 3y \le 9, \\ -x + y \ge -5. \end{cases}$$

Определить координаты угловых точек области решений.

6. Используя графический метод решения задач линейного программирования найти наибольшее значение линейной целевой функции F(x; y) = 2x + 5y в области, заданной ограничениями:

$$\begin{cases}
-x + 2 \ y \le 6, \\
x + y \le 9, \\
x \le 7; \\
x \ge 0; y \ge 0.
\end{cases}$$

Контрольная работа по математике Вариант 3

1. Найти произведение матриц АВС, если

$$A = \begin{pmatrix} 6 & 3 \\ 5 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & -3 \\ -2 & 3 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix}.$$

2. Решить матричное уравнение

$$\begin{pmatrix} 3 & 4 \\ 7 & 8 \end{pmatrix} * X = \begin{pmatrix} 39 \\ 83 \end{pmatrix}.$$

3. Решить систему уравнений по формулам Крамера

$$\begin{cases} 2x - 5y + 6z = 11, \\ -9x + 2y + 3z = 9, \\ 5x + y - 4z = -8. \end{cases}$$

- 4. Составить уравнения двух прямых, проходящих через точку A(2; 3), параллельно и перпендикулярно прямой 5x 2y + 4 = 0.
- 5. Построить область решений системы неравенств $\begin{cases} -x + y \le 4, \\ -x + 4 \ y \ge -8, \\ x + y \le 13. \end{cases}$

Определить координаты угловых точек области решений.

6. Используя графический метод решения задач линейного программирования найти наибольшее значение линейной целевой функции F(x; y) = 4x + 3y в области, заданной ограничениями

$$\begin{cases} x + 2y \le 12, \\ -x + y \le 3, \\ x \le 10; \\ x \ge 0; y \ge 0. \end{cases}$$

Контрольная работа по математике Вариант 4

1. Найти произведение матриц АВС, если

$$A = \begin{pmatrix} 7 & 4 \\ 6 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} -2 & 3 \\ 2 & -3 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 2 \\ 2 & 0 \end{pmatrix}.$$

2. Решить матричное уравнение

$$\begin{pmatrix} 5 & 6 \\ 3 & 4 \end{pmatrix} * X = \begin{pmatrix} 83 \\ 53 \end{pmatrix}.$$

3. Решить систему уравнений по формулам Крамера

$$\begin{cases}
3x - 8y + z = 7, \\
-5x + 4y + 2z = -10, \\
2x + 7y - 3z = 6.
\end{cases}$$

- 4. Составить уравнения двух прямых, проходящих через точку A(4; 1), параллельно и перпендикулярно прямой 3x 4y + 2 = 0
- 5. Построить область решений системы неравенств $\begin{cases} x+y \geq -2, \\ x+4 \ y \leq 16, \\ -x+y \geq -6. \end{cases}$

Определить координаты угловых точек области решений.

6. Используя графический метод решения задач линейного программирования найти наибольшее значение линейной целевой функции F(x; y) = 2x + 4y в области, заданной ограничениями:

$$\begin{cases}
-x + 2 & y \le 8, \\
x + y \le 10, \\
x \le 8; \\
x \ge 0; y \ge 0.
\end{cases}$$

ОТВЕТЫ к контрольной работе по математике

№ зада- ния	1 вариант	2 вариант	3 вариант	4 вариант
1	$\begin{pmatrix} 30 & 9 \\ 30 & 9 \end{pmatrix}$	$\begin{pmatrix} -18 & 3 \\ -18 & 3 \end{pmatrix}$	$\begin{pmatrix} 6 & 15 \\ 6 & 15 \end{pmatrix}$	$\begin{pmatrix} 12 & -12 \\ 12 & -12 \end{pmatrix}$
2	$\begin{pmatrix} 4 \\ 5 \end{pmatrix}$	$\binom{6}{7}$	$\binom{5}{6}$	$\binom{7}{8}$
3	(1; 2; 3)	(3; 1; 2)	(1; 3; 4)	(4; 1; 3)
	параллельная прямая 4х–3у– 6=0	параллельная прямая 2x–5y– 5=0	параллельная прямая 5х–2у– 4=0	параллельная прямая 3х–4у– 8=0
4	перпендикулярн ая прямая 3х+4у– 17=0	перпендикулярн ая прямая 5х+2у– 27=0	перпендикулярн ая прямая 2x+5y-19=0	перпендикулярн ая прямая 4x+3y-19=0
	(-7,5; -4,5)	(-9; 6)	(-8; -4)	(-8; 6)
5	(3,5; 6,5)	(1; -4)	(12; 1)	(2; –4)
	(9; 1)	(6; 1)	(4,5; 8,5)	(8; 2)

	(6; 2)	(4; 5)	(10; 1)	(4; 6)
6	$F_{\mathrm{max}} = 22$	$F_{\rm max} = 33$	$F_{\rm max} = 43$	$F_{\rm max} = 32$

Норма оценки:

Количество правильных	Оценка
ответов	
95-100%	«5»
96-90%	«4»
71-80%	«3»
81% и меньше	«2»

Время выполнения контрольной работы 1ч 30 мин

Тема 4.1. Множества и отношения. Свойства отношений. Операции над множествами

ВОПРОСЫ ПО ТЕМЕ: «МНОЖЕСТВА И ОТНОШЕНИЯ. СВОЙСТВА ОТНОШЕНИЙ. ОПЕРАЦИИ НАД МНОЖЕСТВАМИ. ПРИМЕРЫ»

- 1. Что называется множеством?
- 2. Что такое пустое, универсальное множество?
- 3. Какие операции над множествами вы знаете?
- 4. Перечислите свойства операций над множествами.
- 5. Что такое бинарное отношение?
- 6. Как обозначается отношение?
- 7. Назовите виды бинарных отношений множества?
- 8. Что такое ядро отношения?
- 9. Что называется композицией отношений?

Назовите свойства отношений.

Контрольная работа по теме

«Действия над множествами».

Вариант №1.

№1. Как называется следующее множество чисел:

$$N$$
 – множество... $N = \{1, 2, 3, 4,...\}$

№2. Что обозначает запись?

$$A \cup B = \{x \mid x \in A \lor x \in B\}$$
 $A \triangle B = \{x \mid (x \in A \land x \notin B) \lor (x \notin A \land x \in B)\}$
№3. Выполните операции А×В, С² над множествами:
 $A = \{2,5,6\}$
 $B = \{4,5,6\}$
 $C = \{2,3\}$

1. N – множество натуральных чисел,

$$N = \{1, 2, 3, 4, ...\};$$

Вариант №2.

№1. Как называется следующее множество чисел:

$$Z$$
 – множество ... $Z = \{..., -3, -2, -1, 0, 1, 2, 3, 4, ...\}$

№2. Что обозначает запись?

$$A \cap B = \{x \mid x \in A \land x \in B\}$$

$$\overline{A} = \{ x \mid x \notin A \}$$

№3. Выполните операции А×В, С² над множествами:

$$A = \{1,3,7\}$$

$$B = \{5,2,4\}$$

$$C = \{1,3\}$$

Вариант №3.

№1. Как называется следующее множество чисел:

$$Q = \{ \frac{m}{n} | m \in \mathbb{Z} \land n \in \mathbb{N} \}$$

Q – множество...

№2. Что обозначает запись?

$$A \setminus B = \{x \mid x \in A \land x \notin B\}$$

$$A \times B = \{(a,b) \mid a \in A \land b \in B\}$$

№3. Выполните операции А×В, С² над множествами:

$$A = \{3,1,6\}$$

$$B = \{1,3,8\}$$

$$C = \{1,2\}$$

Норма оценки:

Количество правильных ответов	Оценка
95-100%	«5»
96-90%	«4»

71-80%	«3»
81% и меньше	«2»

Время выполнения контрольной работы 45 мин

Тема 5.1. Основы теории вероятностей

Контрольная работа «Основы теории вероятностей и математической статистики»

1.Задание1.

Вычислить: a)
$$3!$$
; б) $7!-5!$; в) $\frac{7!+5!}{6!}$.

Задание 2. Сколькими способами можно расставлять на одной полке шесть различных книг?

Задание 3. Сколько вариантов распределения трех путевок в санатории различного профиля можно составить для пяти претендентов?

Задание 4. В бригаде из 25 человек нужно выделить четырех для работы на определенном участке. Сколькими способами это можно сделать?

2.Задача **1.** На факультете изучается 16 предметов. На понедельник нужно в расписание поставить 3 предмета. Сколькими способами можно это сделать?

Задача 2. Из 15 объектов нужно отобрать 10 объектов. Сколькими способами это можно сделать?

Задача 3. В соревнованиях участвовало четыре команды. Сколько вариантов распределения мест между ними возможно?

Задача 4. Сколькими способами можно составить дозор из трех солдат и одного офицера, если имеется 80 солдат и 3 офицера?

3.

1. В партии из 18 деталей находятся 4 бракованных. Наугад выбирают 5 деталей. Найти вероятность того, что из этих 5 деталей две окажутся бракованными.

Задача 1. В лотерее из 1000 билетов имеются 200 выигрышных. Вынимают наугад один билет. Чему равна вероятность того, что этот билет выигрышный?

Задача 2. В партии из 18 деталей находятся 4 бракованных. Наугад выбирают 5 деталей. Найти вероятность того, что из этих 5 деталей две окажутся бракованными.

Ответы и решения задач.

	1 Сочетания	я, перестановки
скобки $^{5 }$ Тогда получим $S(6\cdot 7-1) = 5 \cdot 41 = 1\cdot 2\cdot 3\cdot 4\cdot 5\cdot 41 = 120\cdot 41 = 4920$. $\frac{7 +5 }{8} = \frac{5!(6\cdot 7+1)}{5!\cdot 6} = \frac{6\cdot 7+1}{6} = \frac{43}{6}$. Искомое число способов равно числу перестановок из 6 элементов, т.е. $P_6 = 6 =1\cdot 2\cdot 3\cdot 4\cdot 5\cdot 6 = 720$. Задание $P_6 = 6 =1\cdot 2\cdot 3\cdot 4\cdot 5\cdot 6 = 720$. Искомое число вариантов равно числу размещений из 5 элементов по 3 элемента, т.е. $P_6 = 6 =1\cdot 2\cdot 3\cdot 4\cdot 5\cdot 6 = 720$. Искомое число вариантов равно числу размещений из 5 элементов по 3 элемента, т.е. $P_6 = 6 =1\cdot 2\cdot 3\cdot 4\cdot 5\cdot 6 = 720$. Искомое число вариантов равно числу размещений из 5 элементов по 3 элемента, т.е. $P_6 = 6 =1\cdot 2\cdot 3\cdot 4\cdot 5\cdot 6 = 720$. Искомое число вариантов размещений, то это можно сделать $P_6 = 6 =1\cdot 2\cdot 3\cdot 4\cdot 5\cdot 6 = 720$. На как порядок выбранных четырех человек не имеет значения, то это можно $P_6 = 1\cdot 2\cdot 3\cdot 4\cdot 5\cdot 6 = 12650$. Кроме того, при решении задач используются следующие формулы, выражающие основные свойства сочетаний: $P_6 = 1\cdot 2\cdot 3\cdot 4\cdot 5\cdot 6 = 12650$. Кроме того, при решении задач используются следующие формулы, выражающие основные свойства сочетаний: $P_6 = 1\cdot 2\cdot 3\cdot 4\cdot 5\cdot 6 = 12650$. По определению полагают $P_8 = 1\cdot $	Задание1.	a) $3! = 1 \cdot 2 \cdot 3 = 6$.
$\frac{5 (6\cdot7-1)=5 \cdot41=1\cdot2\cdot3\cdot4\cdot5\cdot41=120\cdot41=4920}{\frac{7 +5 }{6!}}=\frac{5 (6\cdot7+1)}{5!\cdot6}=\frac{6\cdot7+1}{6}=\frac{43}{6}.$ Задание 2. Искомое число способов равно числу перестановок из 6 элементов, т.е. $P_6=6 =1\cdot2\cdot3\cdot4\cdot5\cdot6=720$ Задание3. Искомое число вариантов равно числу размещений из 5 элементов по 3 элемента, т.е. $A_5^2=5\cdot4\cdot3=60$ Задание 4. Так как порядок выбранных четырех человек не имеет значения, то это можно сделать $C_{32}^4=12650$ Кроме того, при решении задач используются следующие формулы, выражающие основные свойства сочетаний: $C_{32}^*=\frac{25\cdot24\cdot23\cdot22}{1\cdot2\cdot3\cdot4}=12650$ Кроме того, при решении задач используются следующие формулы, выражающие основные свойства сочетаний: $C_{32}^*=C_{32}^*=12650$ Кроме того, при решении задач используются следующие формулы, выражающие основные свойства сочетаний: $C_{32}^*=C_{32}^*=12650$ Кроме того, при решении задач используются следующие формулы, выражающие основные свойства сочетаний: $C_{32}^*=C_{32}^*=12650$ Кроме того, при решении задач используются следующие формулы, выражающие основные свойства сочетаний: $C_{32}^*=C_{32}^*=12650$ Кроме того, при решении задач используются следующие формулы, выражающие основные свойства сочетаний: $C_{32}^*=C_{32}^*=12650$ Кроме того, при решении задач используются следующие формулы, выражающие основные свойства сочетаний: $C_{32}^*=C_{32}^*=12650$ Кроме того, при решении задач используются следующие формулы, выражающие формулы, выражающие основные свойства сочетаний: $C_{32}^*=C_{32}^*=12650$ Кроме того, при решении задач используются следующие формулы, выражающие формулы, выражающие формулы задачи		,
$\frac{7 +5 }{6!} = \frac{5!(6\cdot 7+1)}{5!6} = \frac{6\cdot 7+1}{6} = \frac{43}{6}.$ Задание 2. Искомое число способов равно числу перестановок из 6 элементов, т.е. $P_6 = 6 =1\cdot 2\cdot 3\cdot 4\cdot 5\cdot 6 = 720$. Задание3. Искомое число вариантов равно числу размещений из 5 элементов по 3 элемента, т.е. $A_5^2 = 5\cdot 4\cdot 3 = 60$. Задание 4. Так как порядок выбранных четырех человек не имеет значения, то это можно еделать $C_{35}^4 = 0$ способами. Находим по первой формуле $C_{25}^4 = \frac{25\cdot 24\cdot 23\cdot 22}{1\cdot 2\cdot 3\cdot 4} = 12650$. Кроме того, при решении задач используются следующие формулы, выражающие основные свойства сочетаний: $C_{35}^* = C_{35}^{****} = 0$ (10 определению полагают $C_{35}^* = 1$ и $C_{35}^0 = 1$); $C_{35}^* = C_{35}^{****} = 0$ (10 определению полагают $C_{35}^* = 1$ и $C_{35}^0 = 1$); $C_{35}^* = C_{35}^{****} = 0$ (2 Решить задачи 1. Способов постановки в расписание трех предметов из 16 столько, сколько можно составить размещений из 16 элементов по 3. $A_{16}^3 = \frac{16!}{(16-3)!} = \frac{16!}{13!} = \frac{13!14\cdot 15\cdot 16}{13!} = 14\cdot 15\cdot 16 = 3360$. Задача 2. Решение. $C_{15}^{10} = \frac{15!}{(15-10)!\cdot 10!} = \frac{15!}{5!10!} = \frac{10!\cdot 11\cdot 12\cdot 13\cdot 14\cdot 15}{5!\cdot 10!} = \frac{11\cdot 12\cdot 13\cdot 14\cdot 15}{1\cdot 2\cdot 3\cdot 4\cdot 5} = \frac{11\cdot 3\cdot 13\cdot 3\cdot 14\cdot 15}{2\cdot 3\cdot 1\cdot 1}$		Тогда получим
Задание 2. Искомое число способов равно числу перестановок из 6 элементов, т.е. $P_6 = 6 = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 = 720$. Задание 3. Искомое число вариантов равно числу размещений из 5 элементов по 3 элемента, т.е. $A_3^2 = 5 \cdot 4 \cdot 3 = 60$. Задание 4. Так как порядок выбранных четырех человек не имеет значения, то это можно седалать C_{25}^4 способами. Находим по первой формуле $C_{25}^4 = \frac{25 \cdot 24 \cdot 23 \cdot 22}{1 \cdot 2 \cdot 3 \cdot 4} = 12650$. Кроме того, при решении задач используются следующие формулы, выражающие основные свойства сочетаний: $C_{\pi}^{n} = C_{\pi}^{m-n} \ (0 \le n \le m)$ (по определению полагают $C_{\pi}^{n} = 1$ и $C_{\pi}^{0} = 1$); $C_{\pi}^{n} + C_{\pi}^{n+1} = C_{\pi+1}^{n+1}$. Способов постановки в расписание трех предметов из 16 столько, сколько можно составить размещений из 16 элементов по 3. $A_{16}^{3} = \frac{16!}{(16-3)!} = \frac{16!}{13} = \frac{13!}{13!} = 14 \cdot 15 \cdot 16 = 3360$. Задача 2. Решение. $C_{15}^{10} = \frac{15!}{(15-10)! \cdot 10!} = \frac{15!}{5!10!} = \frac{10! \cdot 11 \cdot 12 \cdot 13 \cdot 14 \cdot 15}{5! \cdot 10!} = \frac{11 \cdot 12 \cdot 13 \cdot 14 \cdot 15}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} = \frac{11 \cdot 3 \cdot 13 \cdot 3 \cdot 14}{2 \cdot 3 \cdot 1 \cdot 1}$		5! (6 · 7 - 1) = 5! 41 = 1 · 2 · 3 · 4 · 5 · 41 = 120 · 41 = 4920
2. $P_6=6!=1\cdot 2\cdot 3\cdot 4\cdot 5\cdot 6=720$ Задание3. Искомое число вариантов равно числу размещений из 5 элементов по 3 элемента, т.е. $A_5^3=5\cdot 4\cdot 3=60$ Задание 4. Так как порядок выбранных четырех человек не имеет значения, то это можно сделать C_{25}^4 способами. Находим по первой формуле $C_{25}^4=\frac{25\cdot 24\cdot 23\cdot 22}{1\cdot 2\cdot 3\cdot 4}=12650$ Кроме того, при решении задач используются следующие формулы, выражающие основные свойства сочетаний: $C_{\pi}^*=C_{\pi}^{m-\pi}$ (0 $\leq n \leq m$) (по определению полагают $C_{\pi}^n=1$ и $C_{\pi}^0=1$); $C_{\pi}^n+C_{\pi}^{n+1}=C_{\pi+1}^{n+1}$ 2 Решить задачи 3адачи 1. Способов постановки в расписание трех предметов из 16 столько, сколько можно составить размещений из 16 элементов по 3. $A_{16}^3=\frac{16!}{(16-3)!}=\frac{16!}{13!}=\frac{13!\cdot 14\cdot 15\cdot 16}{13!}=14\cdot 15\cdot 16=3360$ Задача 2. Решение. $C_{15}^{10}=\frac{15!}{(15-10)!\cdot 10!}=\frac{15!}{5!10!}=\frac{10!\cdot 11\cdot 12\cdot 13\cdot 14\cdot 15}{5!\cdot 10!}=\frac{11\cdot 12\cdot 13\cdot 14\cdot 15}{1\cdot 2\cdot 3\cdot 4\cdot 5}=\frac{11\cdot 3\cdot 13\cdot 3\cdot 14\cdot 15\cdot 16}{2\cdot 3\cdot 1\cdot 1}$		$\frac{7!+5!}{6!} = \frac{5!(6\cdot7+1)}{5!\cdot6} = \frac{6\cdot7+1}{6} = \frac{43}{6}.$
элемента, т.е. $A_3^2 = 5 \cdot 4 \cdot 3 = 60$ Задание 4. Так как порядок выбранных четырех человек не имеет значения, то это можно еделать C_{25}^4 способами. Находим по первой формуле $C_{25}^4 = \frac{25 \cdot 24 \cdot 23 \cdot 22}{1 \cdot 2 \cdot 3 \cdot 4} = 12650$ Кроме того, при решении задач используются следующие формулы, выражающие основные свойства сочетаний: $C_m^n = C_m^{m-n} \ (0 \le n \le m)$ (по определению полагают $C_n^n = 1$ и $C_n^0 = 1$); $C_m^n + C_m^{n+1} = C_{m+1}^{n+1}$ 2 Решнить задачи Задача 1. Способов постановки в расписание трех предметов из 16 столько, сколько можно составить размещений из 16 элементов по 3. $A_{16}^3 = \frac{16!}{(16-3)!} = \frac{16!}{13!} = \frac{13!14 \cdot 15 \cdot 16}{13!} = 14 \cdot 15 \cdot 16 = 3360$ Задача 2. Решение. $C_{15}^{10} = \frac{15!}{(15-10)! \cdot 10!} = \frac{15!}{5!10!} = \frac{10! \cdot 11 \cdot 12 \cdot 13 \cdot 14 \cdot 15}{5! \cdot 10!} = \frac{11 \cdot 12 \cdot 13 \cdot 14 \cdot 15}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} = \frac{11 \cdot 3 \cdot 13 \cdot 3 \cdot 14}{2 \cdot 3 \cdot 1 \cdot 1}$		
4. Сделать C_{25}^4 способами. Находим по первой формуле $C_{25}^4 = \frac{25 \cdot 24 \cdot 23 \cdot 22}{1 \cdot 2 \cdot 3 \cdot 4} = 12650$ Кроме того, при решении задач используются следующие формулы, выражающие основные свойства сочетаний: $C_m^N = C_m^{N-N} (0 \le n \le m)$ (по определению полагают $C_n^N = 1 \text{и} C_n^0 = 1$); $C_m^N + C_m^{N+1} = C_{m+1}^{N+1}$ 2 Решить задачи $C_m^N + C_m^{N+1} = C_{m+1}^{N+1}$ 2 Способов постановки в расписание трех предметов из 16 столько, сколько можно составить размещений из 16 элементов по 3. $A_{16}^3 = \frac{16!}{(16-3)!} = \frac{16!}{13!} = \frac{13!}{13!} \cdot \frac{14 \cdot 15 \cdot 16}{13!} = 14 \cdot 15 \cdot 16 = 3360$ 3адача 2. Решение. $C_{15}^{10} = \frac{15!}{(15-10)! \cdot 10!} = \frac{15!}{5!10!} = \frac{10! \cdot 11 \cdot 12 \cdot 13 \cdot 14 \cdot 15}{5! \cdot 10!} = \frac{11 \cdot 12 \cdot 13 \cdot 14 \cdot 15}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} = \frac{11 \cdot 3 \cdot 13 \cdot 3 \cdot 14}{2 \cdot 3 \cdot 1 \cdot 1}$	Задание3.	элемента, т.е.
выражающие основные свойства сочетаний: $C_{\mathfrak{M}}^{\mathfrak{n}} = C_{\mathfrak{M}}^{\mathfrak{m}-\mathfrak{n}} \ (0 \le n \le m)$ (по определению полагают $C_{\mathfrak{n}}^{\mathfrak{n}} = 1$ и $C_{\mathfrak{n}}^{\mathfrak{0}} = 1$); $C_{\mathfrak{m}}^{\mathfrak{n}} + C_{\mathfrak{m}}^{\mathfrak{n}+1} = C_{\mathfrak{m}+1}^{\mathfrak{n}+1}$ 2 Решить задачи 3адача 1. Способов постановки в расписание трех предметов из 16 столько, сколько можно составить размещений из 16 элементов по 3. $A_{16}^{3} = \frac{16!}{(16-3)!} = \frac{16!}{13!} = \frac{13! \cdot 14 \cdot 15 \cdot 16}{13!} = 14 \cdot 15 \cdot 16 = 3360$ 3адача 2. Решение. $C_{15}^{10} = \frac{15!}{(15-10)! \cdot 10!} = \frac{15!}{5!10!} = \frac{10! \cdot 11 \cdot 12 \cdot 13 \cdot 14 \cdot 15}{5! \cdot 10!} = \frac{11 \cdot 12 \cdot 13 \cdot 14 \cdot 15}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} = \frac{11 \cdot 3 \cdot 13 \cdot 3 \cdot 14}{2 \cdot 3 \cdot 1 \cdot 1}$		сделать C_{25}^{4} способами. Находим по первой формуле
$C_{m}^{n} + C_{m}^{n+1} = C_{m+1}^{n+1}$. 2 Решить задачи Задача 1. Способов постановки в расписание трех предметов из 16 столько, сколько можно составить размещений из 16 элементов по 3. $A_{16}^{3} = \frac{16!}{(16-3)!} = \frac{16!}{13!} = \frac{13! \cdot 14 \cdot 15 \cdot 16}{13!} = 14 \cdot 15 \cdot 16 = 3360$. Задача 2. Решение. $C_{15}^{10} = \frac{15!}{(15-10)! \cdot 10!} = \frac{15!}{5!10!} = \frac{10! \cdot 11 \cdot 12 \cdot 13 \cdot 14 \cdot 15}{5! \cdot 10!} = \frac{11 \cdot 12 \cdot 13 \cdot 14 \cdot 15}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} = \frac{11 \cdot 3 \cdot 13 \cdot 3 \cdot 14}{2 \cdot 3 \cdot 1 \cdot 1}$		выражающие основные свойства сочетаний:
Задача 1. Способов постановки в расписание трех предметов из 16 столько, сколько можно составить размещений из 16 элементов по 3. $A_{16}^3 = \frac{16!}{(16-3)!} = \frac{16!}{13!} = \frac{13! \cdot 14 \cdot 15 \cdot 16}{13!} = 14 \cdot 15 \cdot 16 = 3360$. Вещение. $C_{15}^{10} = \frac{15!}{(15-10)! \cdot 10!} = \frac{15!}{5!10!} = \frac{10! \cdot 11 \cdot 12 \cdot 13 \cdot 14 \cdot 15}{5! \cdot 10!} = \frac{11 \cdot 12 \cdot 13 \cdot 14 \cdot 15}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} = \frac{11 \cdot 3 \cdot 13 \cdot 3 \cdot 14}{2 \cdot 3 \cdot 1 \cdot 1}$		(по определению полагают $C_n^n = 1_{M} C_n^0 = 1_{M};$ $C_m^n + C_m^{n+1} = C_{m+1}^{n+1}.$
можно составить размещений из 16 элементов по 3. $A_{16}^3 = \frac{16!}{(16-3)!} = \frac{16!}{13!} = \frac{13! \cdot 14 \cdot 15 \cdot 16}{13!} = 14 \cdot 15 \cdot 16 = 3360$ Задача 2. Решение. $C_{15}^{10} = \frac{15!}{(15-10)! \cdot 10!} = \frac{15!}{5!10!} = \frac{10! \cdot 11 \cdot 12 \cdot 13 \cdot 14 \cdot 15}{5! \cdot 10!} = \frac{11 \cdot 12 \cdot 13 \cdot 14 \cdot 15}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} = \frac{11 \cdot 3 \cdot 13 \cdot 3 \cdot 14}{2 \cdot 3 \cdot 1 \cdot 1}$	2 Решить за	дачи
$C_{15}^{10} = \frac{15!}{(15-10)! \cdot 10!} = \frac{15!}{5!10!} = \frac{10! \cdot 11 \cdot 12 \cdot 13 \cdot 14 \cdot 15}{5! \cdot 10!} = \frac{11 \cdot 12 \cdot 13 \cdot 14 \cdot 15}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} = \frac{11 \cdot 3 \cdot 13 \cdot 3 \cdot 14}{2 \cdot 3 \cdot 1 \cdot 1}$	Задача 1.	можно составить размещений из 16 элементов по 3.
	Задача 2.	Решение.
$=\frac{11\cdot 3\cdot 13\cdot 14}{2}=11\cdot 3\cdot 13\cdot 7=3003.$		$C_{15}^{10} = \frac{15!}{(15-10)! \cdot 10!} = \frac{15!}{5!10!} = \frac{10! \cdot 11 \cdot 12 \cdot 13 \cdot 14 \cdot 15}{5! \cdot 10!} = \frac{11 \cdot 12 \cdot 13 \cdot 14 \cdot 15}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} = \frac{11 \cdot 3 \cdot 13 \cdot 3 \cdot 14}{2 \cdot 3 \cdot 1 \cdot 1}$
i e e e e e e e e e e e e e e e e e e e		$=\frac{11\cdot 3\cdot 13\cdot 14}{2}=11\cdot 3\cdot 13\cdot 7=3003.$
Задача 3 Решение.	Задача 3	Решение.

	$P_4 = 1 \cdot 2 \cdot 3 \cdot 4 = 24$
Задача 4	Решение. Солдат в дозор можно выбрать $C_{80}^{3} = \frac{80!}{77!3!} = \frac{77! \cdot 78 \cdot 79 \cdot 80}{77! \cdot 1 \cdot 2 \cdot 3} = \frac{78 \cdot 79 \cdot 80}{2 \cdot 3} = 13 \cdot 79 \cdot 80 = 82160$
	способами, а офицеров $C_3^1 = 3$ способами. Так как с каждой командой из солдат может пойти любой офицер, то всего имеется $C_{80}^3 \cdot C_3^1 = 82160 \cdot 3 = 246480$ способов.
3	Классическое определение вероятности
Задача 1.	Решение. Общее число различных исходов есть $n=1000$. Число исходов, благоприятствующих получению выигрыша, составляет $m=200$. Согласно формуле, получим
	$P(A) = \frac{m}{n} = \frac{200}{1000} = \frac{1}{5} = 0.2$
Задача 2.	Решение. Число всех равновозможных независимых исходов <i>п</i> равно числу сочетаний из 18 по 5 т.е.
	$n = C_{18}^5 = \frac{18 \cdot 17 \cdot 16 \cdot 15 \cdot 14}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} = 18 \cdot 17 \cdot 28 = 8568$
	Подсчитаем число m, благоприятствующих событию A. Среди 5 взятых наугад деталей должно быть 3 качественных и 2 бракованных. Число способов выборки двух бракованных деталей из 4 имеющихся бракованных равно числу сочетаний из 4 по 2:
	$C_4^2 = \frac{4 \cdot 3}{1 \cdot 2} = 6$
	Число способов выборки трех качественных деталей из 14 имеющихся качественных равно
	$C_{14}^3 = \frac{14 \cdot 13 \cdot 12}{1 \cdot 2 \cdot 3} = 14 \cdot 13 \cdot 2 = 364$
	Любая группа качественных деталей может комбинироваться с любой группой бракованных деталей, поэтому общее число комбинаций <i>т</i> составляет
	$m = C_4^2 \cdot C_{14}^3 = 6 \cdot 364 = 2184$
	Искомая вероятность события A равна отношению числа исходов m, благоприятствующих этому событию, к числу n всех равновозможных независимых исходов:
	$P(A) = \frac{m}{n} = \frac{2184}{8568} \approx 0,255$

Норма оценки:

Количество	Оценка

правильных ответов	
95-100%	«5»
96-90%	«4»
71-80%	«3»
81% и меньше	«2»

Время выполнения контрольной работы 1ч 30 мин

ИТОГОВЫЙ КОНТРОЛЬ

Дифференцированный зачет

Варианта №1

- **1.** Решить дифференциальное уравнение и найти его частное решение $dy = (2x^2-5) \ dx \ \pi p u \ x = 1 \ y = -4$
- 2. Исследовать сходимость ряда

$$\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 2^2} + \frac{1}{3 \cdot 2^3} + \dots + \frac{1}{n \cdot 2^n}.$$

3. Решить систему уравнений по формулам Крамера

$$\begin{cases} 4x - 2y + z = 12, \\ -7x + 9y + 3z = -6, \\ 3x + 4y - 2z = 9. \end{cases}$$

- 4. Решить систему уравнений методом Гаусса
- 5. Выполнить действия над комплексными числами (3 + 5i); (7 2i).

Вариант №2

- **1.** Решить дифференциальное уравнение и найти его частное решение $x^2dx + ydy = 0$ при x = 0 y = 1
- 2. Исследовать сходимость ряда

$$\frac{1}{1 \cdot 2} + \frac{1}{3 \cdot 2^2} + \frac{1}{5 \cdot 2^3} + \dots + \frac{1}{(2n-1) \cdot 2^n} + \dots$$

3. Решить систему уравнений по формулам Крамера

$$\begin{cases} 3x - 8y + 6z = 5, \\ -5x + 4y + 3z = 12, \\ 7x + 2y - 5z = -4. \end{cases}$$

- 4. Решить систему уравнений методом Гаусса
- **5.** Выполнить действия над комплексными числами (6 + 2i); (5 + 3i).

Вариант №3

1. Решить дифференциальное уравнение и найти его частное решение

$$\frac{dy}{2x} + \frac{dx}{y} = 0$$
 при x=0 y=2

2. Исследовать сходимость ряда

$$\frac{1}{2 \cdot 2^{2}} + \frac{1}{3 \cdot 2^{3}} + \frac{1}{4 \cdot 2^{4}} + \dots + \frac{1}{(n+1) \cdot 2^{n+1}} + \dots$$

3. Решить систему уравнений по формулам Крамера

$$\begin{cases} 4x - 2 y + z = 12, \\ -7x + 9 y + 3z = -6, \\ 3x + 4 y - 2z = 9. \end{cases}$$

4. Решить систему уравнений методом Гаусса

5.Выполнить действия над комплексными числами (-2+3i); (7-2i).

Вариант №4

1. Решить дифференциальное уравнение и найти его частное решение $\frac{2dy}{dx} = 1 + x^2$ при x=0 y=0

$$\frac{2dy}{dx} = 1 + x^2$$
 при x=0 y=0

$$rac{1}{2}$$
 Исследовать сходимость ряда $rac{1}{2} + rac{2}{3} + rac{3}{4} + rac{4}{5} + \ldots + rac{n}{n+1}$.

3. Решить систему уравнений по формулам Крамера

$$\begin{cases} 2x - 5 y + 6z = 11, \\ -9x + 2 y + 3z = 9, \\ 5x + y - 4z = -8. \end{cases}$$

- 4. Решить систему уравнений методом Гаусса
- 5.Выполнить действия над комплексными числами (5-4i); (6+2i).

Вариант №5

1. Решить дифференциальное уравнение и найти его частное решение dy + xdx = 2dx при x=1 y=1,5

2. Исследовать сходимость ряда

$$\frac{1}{3 \cdot 2} + \frac{2}{3 \cdot 2^2} + \frac{3}{3 \cdot 2^3} + \dots + \frac{n}{3 \cdot 2^n}.$$

3. Решить систему уравнений используя правило Крамера:

$$\begin{cases} x + 2 \ y - z = 2 \\ 2x - 3y + 2z = 2 \\ 3x + y + z = 8 \end{cases}$$

- 4. Решить систему уравнений методом Гаусса.
- 5.Выполнить действия над комплексными числами (3-2i); (5+i).

1. Решить дифференциальное уравнение и найти его частное решение

$$2y dx = xdy при x=1 y=2$$

2. Исследовать сходимость ряда

$$1 + \frac{5}{4} + \frac{8}{6} + \dots + \frac{3n-1}{2n}.$$

3. Решить систему уравнений используя правило Крамера:

$$\begin{cases} 2x + 4y - z = 4 \\ 4x - 6y + 4z = 4 \\ 6x + 2y + 2z = 16 \end{cases}$$

4. Решить систему уравнений методом Гаусса.

5.Выполнить действия над комплексными числами
$$(4 + 2i)$$
; $(-3 + 2i)$.

Норма оценки:

Количество	Оценка
правильных ответов	
95-100%	«5»
96-90%	«4»
71-80%	«3»
81% и меньше	«2»

Время выполнения контрольной работы 90 мин