МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Луганский государственный университет имени Владимира Даля»

Колледж Северодонецкого технологического института (филиал) ФГБОУ ВО «ЛГУ им. В. Даля»

КОМПЛЕКТ КОНТРОЛЬНО-ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине

"Аналитическая химия"

Специальность 18.02.14 Химическая технология производства химических соединений

РАССМОТРЕН И СОГЛАСОВАН	методической комиссией Колледжа
Северодонецкого технологического	о института (филиал) ФГБОУ ВО «ЛГУ им. В.
Даля»	
Протокол № <u>01</u> от « <u>05</u> » _ <u>сентября</u>	_20 <u>25</u> Γ.
_	В.Н. Лескин
Председатель комиссии	В.Н. Лескин
среднего профессионального образ	ого государственного образовательного стандарта вование по специальности производства химических соединений
A / ED EDW HELL	
УТВЕРЖДЕН заместителем директора	Ingle Р.П. Филь
заместителем директора	1.11. Филь
Составитель(и):	
	прополовани СПО Уоливанию
Северопоненкого технопогине	преподаватель СПО Колледжа ского института (филиал) ФГБОУ «ЛГУ им.
северодопецкого технологиче	в.Даля»
	D. Manil

1.ПАСПОРТ КОМЛЕКТА ОЦЕНОЧНЫХ СРЕДСТВ

Комлект оценочных средств предназначен для контроля и оценки результатов освоения учебной дисциплины «Аналитическая химия» для специальности **18.02.14**

Химическая технология производства химических соединений

Контроль и оценка результатов освоения дисциплины осуществляется преподавателем в процессе проведения экспертного наблюдения и оценки на лабораторных и практических занятиях, различных видов опроса, выполнения домашних заданий, расчетов, контрольной работы.

	•
Результаты обучения	
(освоенные умения, усвоенные знания)	Формы и методы контроля и оценки результатов обучения

обучающийся должен уметь:

- выполнять качественные реакции на катионы и анионы разных аналитических групп;
- выполнять количественные определения веществ гравиметрическим и титриметрическим методами;

владеть навыками:

- пользования посудой, реактивами, инструментами, оборудованием;
- приготовлении рабочих растворов и установления их концентрации

иметь представление:

- о качественном, количественном и физико-химическом анализах;
- о реагентах, имеющих специфические и групповые свойства;

обучающийся должен знать:

- теоретические Аналитическая химия;
- наиболее важные химические реакции, применяемые для анализа веществ;
- оборудование и приборы, используемые для анализа веществ;
- правила работы в аналитической лаборатории.

Оценка выполнения домашних заданий, самостоятельных работ, соблюдение обучающимися правил техники безопасности при выполнении лабораторных работ. индивидуальных Контроль выполнения домашних заданий.

Оценка результативности выполнения лабораторных работ, выполняемых с использованием лабораторной посуды и оборудования

Формы и методы контроля: устный опрос, письменные работы, программируемый контроль.

2.ОЦЕНКА ОСВОЕНИЯ УМЕНИЙ И ЗНАНИЙ (ТИПОВЫЕ ЗАДАНИЯ) ПО ДИСЦИПЛИНЕ «Аналитическая химия».

Типовые задания по дисциплине «Аналитическая химия» соответствуют рабочим программам на основе ФГОС СПО. Для проверки качества подготовки будущих специалистов, в Комплект оценочных средств включены разные типы заданий, позволяющие проверить большую часть элементов, предусмотренных существующими требованиями к подготовке специалистов среднего звена

3. Комлект оценочных средств по дисциплине

« Аналитическая химия» Контрольная работа

по разделу: «Теоретические Аналитическая химия»

Вариант 1 Часть А

- А1. В каком веке "Аналитическая химия" начала развитие как научная дисциплина:
- A) в начале 17в;
- Б) в конце 17в;
- В) в середине 17в;
- Г) в середине 18в.
- А2. Целью аналитической химии является:
- А) исследование изотопного состава и определение элементных концентраций;
- Б) отделение мешающих компонентов или выделение определяемого компонента в виде, пригодном для количественного определения;
- В) вопросы о степени влияния отдельных видов антропоген-ных воздействий на живую природу;
- Γ) определение химических элементов или групп элементов, входящих в состав веществ.
 - А3. Чувствительность метода это:
- А) минимальное количества вещества, которым можно определять или обнаруживать данным методом;
- Б) собирательная характеристика метода, включающая его правильность и воспроизводимость. Точность часто характеризуют относительной погрешностью (ошибкой) измерений;
- В) методы атомно-эмиссионной спектроскопии с применением квантометров дают возможность определять 15-20 элементов за несколько секунд;
- Γ) кулонометрический метод, позволяющий проводить определение компонентов с относительной погрешностью $10^{-3} \div 10^{-2}$ %.
 - А4. Формулировка для закона действия масс:
- А) скорость химической реакции пропорциональна произведению концентраций реагирующих веществ;
 - Б) с повышением давления скорость химической реакции возрастает;
- В) скорость химической реакции равна произведению концентраций реагирующих веществ:
 - Г) при введении катализатора скорость химической реакции возрастает.
 - **А5.** Кислой средой является:
 - A) раствор с pH = 7; Б) раствор с pH = 7.9;
 - B) раствор с pH= 5.5; Γ) раствор с pH = 8.1.
 - Аб. К какому типу веществ относится мел:
 - А) растворимые;
- Б) нерастворимые;
- В) малорастворимые;
- Г) кристаллические.
- А7. Состояние химического равновесия характеризуется:
- А) прекращением протекания прямой и обратной химической реакций;
- Б) равенством скоростей прямой и обратной реакций;
- В) равенством суммарной массы продуктов суммарной массе реагентов;
- Γ) равенством суммарного количества вещества продуктов суммарному количеству вещества реагентов.
 - А8. Начальная скорость растворения цинка в соляной кислоте не зависит от:

- А) степени измельчения цинка; Б) температуры раствора HCl;
- В) концентрации HCl; Г) размера пробирки.
- **А9.** Окислитель это атом, молекула или ион, который:
- А) увеличивает свою степень окисления: Б) принимает электроны;
- B) окисляется; Γ) отдаёт свои электроны.
- А10. К окислительно-восстановительным реакциям относят:
- а) растворение натрия в кислоте; б) растворение оксида натрия в кислоте;
- в) растворение гидроксида натрия в кислоте;
- г) растворение карбоната натрия в кислоте.
- **A11.** В комплексном соединении $K_4[Fe(CN)_6]$ группа атомов (CN) является:
- А) внешней сферой;
- Б)комплексообразователем;
- В) внутренней сферой;
- Г) лигандом.
- **A12.** Сокращенное ионное уравнение реакции $Ba(NO_3)_2 + K_2SO_4 = BaSO_4 + 2KNO_3$:
- A) $Ba^{2+} + SO_4^{2-} = BaSO4 \downarrow$;
- $\vec{b} \cdot \vec{K}^{+} + NO_{3}^{-} = KNO_{3} \downarrow;$
- B) Ba(NO₃)₂ + SO₄² = BaSO4 \downarrow + 2 NO₃;
- Γ) Ba²⁺+ K₂SO₄ = BaSO₄ \(\pm + 2K^+ \).

Часть В

В1. Рассчитайте недостающие данные о растворах в таблице:

№	Массовая доля W, %	Масса раствора,	Macca	Macca
Π/Π		Γ	растворителя, г	растворенного
				вещества, г
1.		50		5
2.	10	100		
3.			25	15

Вариант 2 Часть А

- А1. Наука о методах определения химического состава вещества и его структуры:
 - А) физическая химия;
- Б) аналитическая химия;
- В) химическая физика:
- Γ) квантовая химия.
- **А2.** Отношение числа молей эквивалентов растворенного вещества к объему раствора:
 - А) молярная масса эквивалентности;
- Б) фактор эквивалентности;
- В) молярная концентрация эквивалентности; Г) эквивалент.
- А3. Слабым электролитом является:
- A) H_2SO_4 ;
- Б) HClO;
- B) HBr;
- Γ) HNO_{3.}
- **А4.** Среди предложенных солей CH_3COONH_4 , $CuBr_2$, $Al_2(SO_4)_3$ гидролизу подвергается (подвергаются)
 - A) CH₃COONH₄;
- Б) CuBr₂;
- B) $Al_2(SO_4)_3$;
- Г) все вещества.
- А5. какую окраску имеет индикатор фенолфталеин в кислой среде:
 - А) бесцветный;
- Б) желтый;
- В) малиновый;
- Г) синий.
- **А6.** Растворимость вещества при данных условиях это:
 - А) концентрация вещества в насыщенном растворе;
 - Б) концентрация вещества в растворе;
 - В) масса вещества в объёме раствора;

- Γ) масса вещества в массе растворителя.
- **A7.** Обратимая реакция 2NO (г.) + O 2 (г.) \leftrightarrow 2NO 2 (г.) + Q находится в состоянии равновесия. При каких условиях скорость обратной реакции увеличится в большей степени, чем скорость прямой реакции?
 - А) понижение давления;
- Б) повышение температуры;
- В) повышение давления;
- Г) применение катализатора.
- **А8.** Введение катализатора в систему, находящуюся в состоянии динамического новесия:
 - А) увеличит скорость только прямой реакции;
 - Б) увеличит скорость только обратной реакции;
 - В) увеличит скорость как прямой, так и обратной реакции;
 - Г) не оказывает влияние на скорость ни прямой, ни обратной реакции.
 - А9. К типичным восстановителям относятся:
 - A) оксид марганца (IV), оксид углерода (IV) и оксид кремния (IV);
 - Б) вода, царская водка и олеум;
 - В) перманганат калия, манганат калия и хромат калия;
 - Г) сероводород и щелочные металлы.
 - **A10.** Соляная кислота восстановитель в реакции:

A)
$$PbO_2 + 4HCl = PbCl_2 + Cl_2 + 2H_2O$$
;

$$E$$
) $Zn + 2HCl = ZnCl_2 + H_2$;

$$B) PbO + 2HCl = PbCl_2 + H_2O;$$

$$\Gamma$$
) $LH_3 + HCl = LH_4Cl$.

- **A11.** В соединении $K_3[Fe(CN)_5 H_2O]$ координационное число равно:
- A) 5;
 - Б) 6;
- B) 1; Γ) 3.
- **A12.** Какая реакция соответствует сокращенному уравнению $H^+ + OH^- = H_2O$:
- A) $ZnCl_2 + 2NaOH = Zn(OH)_2 + 2NaCl$;
- \mathbf{B}) NaOH + HNO₃ = NaNO₃ + H₂O;
- B) $H_2SO_4 + Cu(OH)_2 = CuSO_4 + 2H_2O$;
- Γ) $H_2SO_3 + Ba(OH)_2 = BaSO_3 + 2H_2O$.

Часть В

В1. Рассчитайте недостающие данные о растворах в таблице:

$N_{\underline{0}}$	Массовая доля W, %	Масса раствора,	Macca	Macca
Π/Π		Γ	растворителя, г	растворенного
				вещества, г
1.		300		15
2.		500	450	
3.	0,1	1000		

Контрольная работа составлена в 2-х вариантах.

Каждый вариант состоит из двух частей. Эти части выделяются.

Часть А состоит из 12 заданий с выбором правильного ответа из четырех предложенных вариантов (все 12 заданий базового уровня сложности). Правильный ответ оценивается в 1 балл.

Часть В содержит 1 задание в виде задачи на вычисление процентной концентрации. Правильный ответ оценивается в 2 балла.

Критерии оценивания:

Процент результативности (правильных	Оценка уровня подготовки				
ответов)	балл (отметка)	вербальный аналог			
90 ÷ 100 (13-14 баллов)	5	отлично			
80 ÷ 89 (11-12 баллов)	4	хорошо			
70 ÷ 79 (9-10 баллов)	3	удовлетворительно			
менее 70 (менее 9 баллов)	2	неудовлетворительно			

Ключ к тестовому заданию.

No	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	A12
варианта/												
№												
задания												
1	Γ	Γ	б	a	В	б	б	Γ	б	a	Γ	a
2	б	В	б	Γ	a	Γ	б	В	Γ	a	б	б

Правильное решение части В.

Вариант 1.

$N_{\underline{0}}$	Массовая доля W, %	Масса раствора,	Macca	Macca
Π/Π		Γ	растворителя, г	растворенного
				вещества, г
1.	10	50	45	5
2.	10	100	90	10
3.	37,5	40	25	15

Вариант 2.

No	Массовая доля W, %	Масса раствора,	Macca	Macca
Π/Π		Γ	растворителя, г	растворенного
				вещества, г
1.	5	300	285	15
2.	10	500	450	50
3.	0,1	1000	999	1

Контрольная работа по разделу: «Качественный анализ».

Вариант 1 Часть $\bf A$ **A1.** К катионам 1 аналитикой группы относятся:

2) Ba²⁺, Ca²⁺, Sr²⁺; 4) Cu²⁺, Hg⁺, Co²⁺,Ni²⁺.

А2. В какой цвет окрашивают пламя ионы натрия Na:

2) фиолетовый;

1) Na⁺, NH₄⁺, K⁺; 3) Ag⁺, Hg₂⁺, Pb²⁺;

1) зеленый;

АЗ. Какой реагент является групповым для катионов 2 аналитической группы: 1) азотная кислота; 2) раствор гидроксида натрия; 3) раствор хлороводородной кислоты; 4) раствор серной кислоты. А4. Для какого катиона реакция взаимодействия с реактивом Несслера является качественной: 1) №°; 2) Ва²°; 3) №14°; 4) К°. А5. Какого цвета осадок образуется при взаимодействии катионов свинца Pb²° с хроматом калия К₂СгО4? 1) желтый; 2) красно-бурый; 3) желто-зеленый; 4) белый. А6. Какого цвета осадок образуется при взаимодействии катионов ртути Hg₂²° с раствором йодида калия К!? 1) черный; 2) грязно-зеленый; 3) белый; 4) красный. А7. При взаимодействии гексацианоферрата калия (желтой кровяной соли) К₄[Fe(CN)₀] с катионом железа Fe³° образуется: 1) белый осадок; 2) желтый осадок; 3) берлинская лазурь — осадок синего цвета; 4) зеленый осадок. А8. Какой реагент является групповым для катионов 1 аналитической группы: а) нет группового реагента; 8) раствор гидроксида натрия; б) раствор хлороводородной кислоты; 7) раствор греной кислоты. А9. При взаимодействии катиона цинка Zn²° с групповым реагентом протекает следующая реакция: 1) ЗZnCl₂+ 2K₃[Fe(CN)₀] = Zn₃[Fe(CN)₀]₂+ 6KCl; 2) ZnCl₂+ 2NaOH = Zn(OH)₂+2NaCl; 3) ZnCl₂+ (NH₃)₂8 = Zn8 +H₅SO₄. А 10. Раствор гексацианоферрата калия (желтой кровяной соли) К₄[Fe(CN)₀] является качественным на катионы: 1) Fe³⁻; 2) Fe²⁻; 3) Mg²²; 4) Gu²², Hg², Co²², Ni²². 41. К катионам 3 аналитикой группы относятся: 1) Fe²¬, Fe³+, Mn²²+, Bi²+, Mg²²; 2) Ba²²-, Ca²+, Sr²²-; 3) Al³²-, Zn²²-, Cr³³; 4) Cu²²-, Hg²-, Co²²-, Ni²²	 желтый; красный. 	
1) № 1; 2) Ва²+; 3) № 4; 4) № 1. А5. Какого цвета осадок образуется при взаимодействии катионов свинца Pb²+ с хроматом калия K₂CrO₄? 1) желтый; 2) красно-бурый; 3) желто-зеленый; 4) белый. А6. Какого цвета осадок образуется при взаимодействии катионов ртути Hg₂²+ с раствором йодида калия КІ? 1) черный; 2) грязно-зеленый; 3) белый; 4) красный. А7. При взаимодействии гексацианоферрата калия (желтой кровяной соли) К₄[Fe(CN)₄] с катионом железа Fe²+ образуется: 1) белый осадок; 2) желтый осадок; 3) берлинская лазурь — осадок синего цвета; 4) зеленый осадок. А8. Какой реагент является групповым для катионов 1 аналитической группы: а) нет группового реагента; в) раствор гидроксида натрия; б) раствор хлороводородной кислоты; г) раствор серной кислоты. А9. При взаимодействии катиона цинка Zn²+ с групповым реагентом протекает следующая реакция: 1) 3ZnCl₂+2K₃[Fe(CN)₄] = Zn₃[Fe(CN)₄] + 6KCl; 2) ZnCl₂+2NaOH = Zn(OH)₂+2NaCl; 3) ZnCl₂+2NaOH = Zn(OH)₂+2NaCl; 4) ZnSO₄+H₂S = ZnS +H₂SO₄. А 10. Раствор гексацианоферрата калия (желтой кровяной соли) К₄[Fe(CN)₄] является качественным на катионы: 1) Fe³+; 2) Fe²+; 3) Mg²+; 4) Ва²+. А11. К катионам 3 аналитикой группы относятся: 1) Fe²+ Fe³+, Mn²+, B1+, Mg²+; 2) Ba²+, Ca²+, Sr²+; 3) Aβ³+, Zn²+, Cr³+; 4) Cu²+, Hg⁺+, Co²+, Ni²+.	 азотная кислота; раствор хлороводородной кисло 	2) раствор гидроксида натрия;оты;4) раствор серной кислоты.
3) NH ₄ *; 4) K*. A5. Какого цвета осадок образуется при взаимодействии катионов свинца Pb²* с хроматом калия K ₂ CrO ₄ ? 1) желтый; 2) красно-бурый; 3) желто-зеленый; 4) белый. A6. Какого цвета осадок образуется при взаимодействии катионов ртути Hg₂²+ с раствором йодида калия KI? 1) черный; 2) грязно-зеленый; 3) белый; 4) красный. A7. При взаимодействии гексацианоферрата калия (желтой кровяной соли) K ₄ [Fe(CN) ₆] с катионом железа Fe³* образуется: 1) белый осадок; 3) берлинская лазурь — осадок синего цвета; 4) зеленый осадок. A8. Какой реагентя является групповым для катионов 1 аналитической группы: а) нет группового реагента; в) раствор гидроксида натрия; б) раствор хлороводородной кислоты; г) раствор серной кислоты. A9. При взаимодействии катиона цинка Zn²+ с групповым реагентом протекает следующая реакция: 1) 3ZnCl ₂ + 2K ₃ [Fe(CN) ₆] = Zn ₃ [Fe(CN) ₆] ₂ + 6KCl; 2) ZnCl ₂ + 2NaOH = Zn(OH) ₂ +2NaCl; 3) ZnCl ₂ + (NH ₄) ₂ S = ZnS + 2NH ₄ Cl; 4) ZnSO ₄ + H ₂ S = ZnS + 2NH ₄ Cl; 4) ZnSO ₄ + H ₂ S = ZnS + 2NH ₄ Cl; 4) ZnSO ₄ + H ₂ S = ZnS + 2NH ₄ Cl; 4) ZnSO ₄ + H ₂ S = ZnS + 2NH ₄ Cl; 4) ZnSO ₄ + H ₂ S = Zn S + 2NH ₄ Cl; 4) ZnSO ₄ + H ₂ S = ZnS + 2NH ₄ Cl; 4) ZnSO ₄ + ZnSO ₄	качественной:	
А5. Какого цвета осадок образуется при взаимодействии катионов свинца Pb²+ с хроматом калия K₂CrO₄? 1) желтый; 2) красно-бурый; 3) желто-зеленый; 4) белый. А6. Какого цвета осадок образуется при взаимодействии катионов ртути Hg₂²+ с раствором йодида калия KI? 1) черный; 2) грязно-зеленый; 3) белый; 4) красный. А7. При взаимодействии гексацианоферрата калия (желтой кровяной соли) K₄[Fe(CN)₆] с катионом железа Fe³+ образуется: 1) белый осадок; 2) желтый осадок; 3) берлинская лазурь — осадок синего цвета; 4) зеленый осадок. А8. Какой реагент является групповым для катионов 1 аналитической группы: а) нет группового реагента; в) раствор гидроксида натрия; б) раствор хлороводородной кислоты; г) раствор серной кислоты. А9. При взаимодействии катиона цинка Zn²+ с групповым реагентом протекает следующая реакция: 1) 3ZnCl₂+ 2K₃[Fe(CN)₆] = Zn₃ [Fe(CN)₆]₂+ 6KCl; 2) ZnCl₂+ 2NaOH = Zn(OH)₂+2NaCl; 3) ZnCl₂+ 2NaOH = Zn(OH)₂+2NaCl; 4) ZnSO₄+ H₂S = ZnS+2NH₄Cl; 4) LnSO₄+ LnSO₄	1) Na ⁺ ; 2) Ba ²⁺ ;	
хроматом калия K2CrO4? 1) желтый; 2) красно-бурый; 3) желто-зеленый; 4) белый. Аб. Какого цвета осадок образуется при взаимодействии катионов ртути Hg2²+ с раствором йодида калия KI? 1) черный; 2) грязно-зеленый; 3) белый; 4) красный. А7. При взаимодействии гексацианоферрата калия (желтой кровяной соли) K4[Fe(CN)6] с катионом железа Fe³+ образуется: 1) белый осадок; 2) желтый осадок; 3) берлинская лазурь — осадок синего цвета; 4) зеленый осадок. А8. Какой реагент является групповым для катионов 1 аналитической группы: а) нет группового реагента; в) раствор гидроксида натрия; б) раствор хлороводородной кислоты; г) раствор серной кислоты. А9. При взаимодействии катиона цинка Zn²+ с групповым реагентом протекает следующая реакция: 1) 3ZnCl2+ 2K3[Fe(CN)6] = Zn3 [Fe(CN)6]2+ 6KCl; 2) ZnCl2+ 2NaOH = Zn(OH)2+2NaCl; 3) ZnCl2+ 2NaOH = Zn(OH)2+2NaCl; 4) ZnSO4+ H2S = ZnS +2NH4Cl; 4) ZnSO4+ H2S = ZnS +B1SO4. А 10. Раствор гексацианоферрата калия (желтой кровяной соли) K4[Fe(CN)6] является качественным на катионы: 1) Fe³+; 2) Fe²+; 3) Mg²+; 4) Ba²+. А11. К катионам З аналитикой группы относятся: 1) Fe²+ Fe³+, Mn²+, Bi*, Mg²+; 2) Ba²+, Ca²+, Sr²+; 3) Al³+, Zn²+, Cr³+; 4) Cu²+, Hg²+, Co²+, Ni²+.		
1) желтый; 2) красно-бурый; 3) желто-зеленый; 4) белый. А6. Какого цвета осадок образуется при взаимодействии катионов ртути Hg2²+ с раствором йодида калия KI? 1) черный; 2) грязно-зеленый; 3) белый; 4) красный. А7. При взаимодействии гексацианоферрата калия (желтой кровяной соли) K4[Fe(CN)6] с катионом железа Fe³+ образуется: 1) белый осадок; 2) желтый осадок; 3) берлинская лазурь – осадок синего цвета; 4) зеленый осадок. А8. Какой реагент является групповым для катионов 1 аналитической группы: а) нет группового реагента; в) раствор гидроксида натрия; б) раствор хлороводородной кислоты; г) раствор серной кислоты. А9. При взаимодействии катиона цинка Zn²+ с групповым реагентом протекает следующая реакция: 1) 3ZnCl2+ 2K3[Fe(CN)6] = Zn3 [Fe(CN)6]2+ 6KCl; 2) ZnCl2+ 2NaOH = Zn(OH)2+2NaCl; 3) ZnCl2+ (NH4)2S = ZnS +2NH4Cl; 4) ZnSO4+ H2S = ZnS +H2SO4. А 10. Раствор гексацианоферрата калия (желтой кровяной соли) K4[Fe(CN)6] является качественным на катионы: 1) Fe³+; 2) Fe²+; 3) Mg²+; 4) Ba²+. А11. К катионам 3 аналитикой группы относятся: 1) Fe²+, Fe³+, Mn²+, Bi+, Mg²+; 2) Ba²+, Ca²+, Sr²+; 3) Al³+, Zn²+, Cr³+; 4) Cu²+, Hg⁺+, Co²+, Ni²+.	А5. Какого цвета осадок образуето	ся при взаимодействии катионов свинца ${ m Pb}^{2+}$ с
3) желто-зеленый; 4) белый. Аб. Какого цвета осадок образуется при взаимодействии катионов ртути Hg2²+ с раствором йодида калия KI? 1) черный; 2) грязно-зеленый; 3) белый; 4) красный. А7. При взаимодействии гексацианоферрата калия (желтой кровяной соли) K4[Fe(CN)6] с катионом железа Fe³+ образуется: 1) белый осадок; 2) желтый осадок; 3) берлинская лазурь — осадок синего цвета; 4) зеленый осадок. А8. Какой реагент является групповым для катионов 1 аналитической группы: а) нет группового реагента; в) раствор гидроксида натрия; б) раствор хлороводородной кислоты; г) раствор серной кислоты. А9. При взаимодействии катиона цинка Zn²+ с групповым реагентом протекает следующая реакция: 1) 3ZnCl₂+2K₃[Fe(CN)6] = Zn₃ [Fe(CN)6]₂+6KCl; 2) ZnCl₂+2NaOH = Zn(OH)₂+2NaCl; 3) ZnCl₂+(NH4)₂S = ZnS+H₂SO4. А 10. Раствор гексацианоферрата калия (желтой кровяной соли) K₄[Fe(CN)6] является качественным на катионы: 1) Fe³+; 2) Fe³+; 3) Mg²+; 4) Ba²+. А11. К катионам 3 аналитикой группы относятся: 1) Fe²+, Fa³+, Mn²+, Bi+, Mg²+; 2) Ba²+, Ca²+, Sr²+; 3) Al³+, Zn²+, Cr³+; 4) Cu²+, Hg+, Co²+, Ni²+.	хроматом калия K ₂ CrO ₄ ?	
Аб. Какого цвета осадок образуется при взаимодействии катионов ртути $Hg_2^{2^+}c$ раствором йодида калия KI ? 1) черный; 2) грязно-зеленый; 3) белый; 4) красный. А7. При взаимодействии гексацианоферрата калия (желтой кровяной соли) $K_4[Fe(CN)_6]$ с катионом железа Fe^{3+} образуется: 1) белый осадок; 2) желтый осадок; 3) берлинская лазурь — осадок синего цвета; 4) зеленый осадок. А8. Какой реагент является групповым для катионов 1 аналитической группы: а) нет группового реагента; в) раствор гидроксида натрия; б) раствор хлороводородной кислоты; г) раствор серной кислоты. А9. При взаимодействии катиона цинка $Zn^{2+}c$ групповым реагентом протекает следующая реакция: 1) $3ZnCl_2 + 2K_3[Fe(CN)_6] = Zn_3[Fe(CN)_6]_2 + 6KCl;$ 2) $ZnCl_2 + 2NaOH = Zn(OH)_2 + 2NaCl;$ 3) $ZnCl_2 + (NH_4)_2S = ZnS + 2NH_4Cl;$ 4) $ZnSO_4 + H_2S = ZnS + H_2SO_4$. А 10. Раствор гексацианоферрата калия (желтой кровяной соли) $K_4[Fe(CN)_6]$ является качественным на катионы: 1) Fe^{3+} ; 2) Fe^{2+} ; 3) Mg^{2+} ; 4) Ba^{2+} . А11. К катионам 3 аналитикой группы относятся: 1) Fe^{2+} , Fe^{3+} , Mn^{2+} , Bi^+ , Mg^{2+} ; 2) Ba^{2+} , Ca^{2+} , Sr^{2+} ; 3) Al^{3+} , Zn^{2+} , Cr^{3+} ; 4) Cu^{2+} , Hg^+ , Co^{2+} , Ni^{2+} .	1) желтый; 2) красно	-бурый;
раствором йодида калия КІ? 1) черный; 2) грязно-зеленый; 3) белый; 4) красный. A7. При взаимодействии гексацианоферрата калия (желтой кровяной соли) К4[Fe(CN)6] с катионом железа Fe³+ образуется: 1) белый осадок; 2) желтый осадок; 3) берлинская лазурь — осадок синего цвета; 4) зеленый осадок. A8. Какой реагент является групповым для катионов 1 аналитической группы: а) нет группового реагента; в) раствор гидроксида натрия; б) раствор хлороводородной кислоты; г) раствор серной кислоты. A9. При взаимодействии катиона цинка Zn²+ с групповым реагентом протекает следующая реакция: 1) 3ZnCl₂+2K₃[Fe(CN)6] = Zn₃[Fe(CN)6]₂+ 6KCl; 2) ZnCl₂+2NaOH = Zn(OH)₂+2NaCl; 3) ZnCl₂+(NH4)₂S = ZnS +2NH4Cl; 4) ZnSO4+H₂S = ZnS +H₂SO4. A 10. Раствор гексацианоферрата калия (желтой кровяной соли) К₄[Fe(CN)6] является качественным на катионы: 1) Fe³+; 2) Fe²+; 3) Mg²+; 4) Ba²+. A11. К катионам 3 аналитикой группы относятся: 1) Fe²+, Fe³+, Mn²+, Bi+, Mg²+; 2) Ba²+, Ca²+, Sr²+; 3) Al³+, Zn²+, Cr³+; 4) Cu²+, Hg⁺+, Co²+, Ni²+.	3) желто-зеленый; 4) белый.	
1) черный; 2) грязно-зеленый; 3) белый; 4) красный. A7. При взаимодействии гексацианоферрата калия (желтой кровяной соли) K4[Fe(CN)6] с катионом железа Fe³+ образуется: 1) белый осадок; 2) желтый осадок; 3) берлинская лазурь — осадок синего цвета; 4) зеленый осадок. A8. Какой реагент является групповым для катионов 1 аналитической группы: а) нет группового реагента; в) раствор гидроксида натрия; б) раствор хлороводородной кислоты; г) раствор серной кислоты. A9. При взаимодействии катиона цинка Zn²+ с групповым реагентом протекает следующая реакция: 1) 3ZnCl₂ + 2K₃[Fe(CN)6] = Zn₃ [Fe(CN)6]₂ + 6KCl; 2) ZnCl₂ + 2N₃OH = Zn(OH)₂ + 2NaCl; 3) ZnCl₂ + (NH4)₂S = ZnS + 2NH4Cl; 4) ZnSO4 + H₂S = ZnS + H₂SO4. A 10. Раствор гексацианоферрата калия (желтой кровяной соли) K4[Fe(CN)6] является качественным на катионы: 1) Fe³+; 2) Fe²+; 3) Mg²+; 4) Ba²+. A11. К катионам 3 аналитикой группы относятся: 1) Fe²+, Fe³+, Mn²+, Bi+, Mg²+; 2) Ba²+, Ca²+, Sr²+; 3) Al³+, Zn²+, Cr³+; 4) Cu²+, Hg⁺+, Co²+, Ni²+.	А6. Какого цвета осадок образуето	ся при взаимодействии катионов ртути $\mathrm{Hg_2}^{2+}$ с
3) белый; 4) красный. А7. При взаимодействии гексацианоферрата калия (желтой кровяной соли) К4[Fe(CN) ₆] с катионом железа Fe ³⁺ образуется: 1) белый осадок; 2) желтый осадок; 3) берлинская лазурь — осадок синего цвета; 4) зеленый осадок. А8. Какой реагент является групповым для катионов 1 аналитической группы: а) нет группового реагента; в) раствор гидроксида натрия; б) раствор хлороводородной кислоты; г) раствор серной кислоты. А9. При взаимодействии катиона цинка Zn ²⁺ с групповым реагентом протекает следующая реакция: 1) 3ZnCl ₂ + 2K ₃ [Fe(CN) ₆] = Zn ₃ [Fe(CN) ₆] ₂ + 6KCl; 2) ZnCl ₂ + 2NaOH = Zn(OH) ₂ + 2NaCl; 3) ZnCl ₂ + (NH ₄) ₂ S = ZnS + 2NH ₄ Cl; 4) ZnSO ₄ + H ₂ S = ZnS + H ₂ SO ₄ . А 10. Раствор гексацианоферрата калия (желтой кровяной соли) К ₄ [Fe(CN) ₆] является качественным на катионы: 1) Fe ³⁺ ; 2) Fe ²⁺ ; 3) Mg ²⁺ ; 4) Ba ²⁺ . А11. К катионам 3 аналитикой группы относятся: 1) Fe ²⁺ , Fe ³⁺ , Mn ²⁺ , Bi ⁺ , Mg ²⁺ ; 2) Ba ²⁺ , Ca ²⁺ , Sr ²⁺ ; 3) Al ³⁺ , Zn ²⁺ , Cr ³⁺ ; 4) Cu ²⁺ , Hg ⁺ , Co ²⁺ , Ni ²⁺ .	раствором йодида калия KI?	
А7. При взаимодействии гексацианоферрата калия (желтой кровяной соли) $K_4[Fe(CN)_6]$ с катионом железа Fe^{3+} образуется: 1) белый осадок; 2) желтый осадок; 3) берлинская лазурь — осадок синего цвета; 4) зеленый осадок. А8. Какой реагент является групповым для катионов 1 аналитической группы: а) нет группового реагента; в) раствор гидроксида натрия; 6) раствор хлороводородной кислоты; г) раствор серной кислоты. А9. При взаимодействии катиона цинка Zn^{2+} с групповым реагентом протекает следующая реакция: 1) $3ZnCl_2 + 2K_3[Fe(CN)_6] = Zn_3[Fe(CN)_6]_2 + 6KCl;$ 2) $ZnCl_2 + 2NaOH = Zn(OH)_2 + 2NaCl;$ 3) $ZnCl_2 + (NH_4)_2S = ZnS + 2NH_4Cl;$ 4) $ZnSO_4 + H_2S = ZnS + H_2SO_4$. А 10. Раствор гексацианоферрата калия (желтой кровяной соли) $K_4[Fe(CN)_6]$ является качественным на катионы: 1) Fe^{3+} ; 2) Fe^{2+} ; 3) Mg^{2+} ; 4) Ba^{2+} . А11. К катионам 3 аналитикой группы относятся: 1) Fe^{2+} , Fe^{3+} , Mn^{2+} , Bi^+ , Mg^{2+} ; 2) Ba^{2+} , Ca^{2+} , Sr^{2+} ; 3) Al^{3+} , Zn^{2+} , Cr^{3+} ; 4) Cu^{2+} , Hg^+ , Co^{2+} , Ni^{2+} .	 черный; грязно-зелен 	ный;
$K_4[Fe(CN)_6]$ с катионом железа Fe^{3+} образуется: 1) белый осадок; 2) желтый осадок; 3) берлинская лазурь — осадок синего цвета; 4) зеленый осадок. А8. Какой реагент является групповым для катионов 1 аналитической группы: а) нет группового реагента; в) раствор гидроксида натрия; 6) раствор хлороводородной кислоты; г) раствор серной кислоты. A9. При взаимодействии катиона цинка Zn^{2+} с групповым реагентом протекает следующая реакция: 1) $3ZnCl_2 + 2K_3[Fe(CN)_6] = Zn_3 [Fe(CN)_6]_2 + 6KCl;$ 2) $ZnCl_2 + 2NaOH = Zn(OH)_2 + 2NaCl;$ 3) $ZnCl_2 + (NH_4)_2S = ZnS + 2NH_4Cl;$ 4) $ZnSO_4 + H_2S = ZnS + H_2SO_4.$ A 10. Раствор гексацианоферрата калия (желтой кровяной соли) $K_4[Fe(CN)_6]$ является качественным на катионы: 1) Fe^{3+} ; 2) Fe^{2+} ; 3) Mg^{2+} ; 4) Ba^{2+} . A11. К катионам 3 аналитикой группы относятся: 1) Fe^{2+} , Fe^{3+} , Mn^{2+} , Bi^+ , Mg^{2+} ; 2) Ba^{2+} , Ca^{2+} , Sr^{2+} ; 3) Al^{3+} , Zn^{2+} , Cr^{3+} ; 4) Cu^{2+} , Hg^+ , Co^{2+} , Ni^{2+} .	,	
1) белый осадок; 2) желтый осадок; 3) берлинская лазурь — осадок синего цвета; 4) зеленый осадок. А8. Какой реагент является групповым для катионов 1 аналитической группы: а) нет группового реагента; в) раствор гидроксида натрия; б) раствор хлороводородной кислоты; г) раствор серной кислоты. А9. При взаимодействии катиона цинка Zn²+ с групповым реагентом протекает следующая реакция: 1) 3ZnCl₂ + 2K₃[Fe(CN) ₆] = Zn₃ [Fe(CN) ₆]₂ + 6KCl; 2) ZnCl₂ + 2NaOH = Zn(OH)₂ + 2NaCl; 3) ZnCl₂ + (NH₄)₂S = ZnS + 2NH₄Cl; 4) ZnSO₄ + H₂S = ZnS + H₂SO₄. A 10. Раствор гексацианоферрата калия (желтой кровяной соли) K₄[Fe(CN) ₆] является качественным на катионы: 1) Fe³+; 2) Fe²+; 3) Mg²+; 4) Ba²+. A11. К катионам 3 аналитикой группы относятся: 1) Fe²+, Fe³+, Mn²+, Bi⁺, Mg²+; 2) Ba²+, Ca²+, Sr²+; 3) Al³+, Zn²+, Cr³+; 4) Cu²+, Hg⁺+, Co²+, Ni²+.		
3) берлинская лазурь — осадок синего цвета; 4) зеленый осадок. А8. Какой реагент является групповым для катионов 1 аналитической группы: а) нет группового реагента; в) раствор гидроксида натрия; б) раствор хлороводородной кислоты; г) раствор серной кислоты. А9. При взаимодействии катиона цинка Zn²+ с групповым реагентом протекает следующая реакция: 1) 3ZnCl₂ + 2K₃[Fe(CN)₀] = Zn₃[Fe(CN)₀]₂ + 6KCl; 2) ZnCl₂ + 2NaOH = Zn(OH)₂ + 2NaCl; 3) ZnCl₂ + (NH₄)₂S = ZnS + 2NH₄Cl; 4) ZnSO₄ + H₂S = ZnS + H₂SO₄. А 10. Раствор гексацианоферрата калия (желтой кровяной соли) K₄[Fe(CN)₀] является качественным на катионы: 1) Fe³+; 2) Fe²+; 3) Mg²+; 4) Ba²+. А11. К катионам 3 аналитикой группы относятся: 1) Fe²+, Fe³+, Mn²+, Bi⁺, Mg²+; 2) Ba²+, Ca²+, Sr²+; 3) Al³+, Zn²+, Cr³+; 4) Cu²+, Hg⁺+, Co²+, Ni²+.		
А8. Какой реагент является групповым для катионов 1 аналитической группы: а) нет группового реагента; в) раствор гидроксида натрия; б) раствор хлороводородной кислоты; г) раствор серной кислоты. А9. При взаимодействии катиона цинка Zn^{2+} с групповым реагентом протекает следующая реакция: 1) $3ZnCl_2 + 2K_3[Fe(CN)_6] = Zn_3[Fe(CN)_6]_2 + 6KCl;$ 2) $ZnCl_2 + 2NaOH = Zn(OH)_2 + 2NaCl;$ 3) $ZnCl_2 + (NH_4)_2S = ZnS + 2NH_4Cl;$ 4) $ZnSO_4 + H_2S = ZnS + H_2SO_4$. А 10. Раствор гексацианоферрата калия (желтой кровяной соли) $K_4[Fe(CN)_6]$ является качественным на катионы: 1) Fe^{3+} ; 2) Fe^{2+} ; 3) Mg^{2+} ; 4) Ba^{2+} . А11. К катионам 3 аналитикой группы относятся: 1) Fe^{2+} , Fe^{3+} , Mn^{2+} , Bi^+ , Mg^{2+} ; 2) Ba^{2+} , Ca^{2+} , Sr^{2+} ; 3) Al^{3+} , Zn^{2+} , Cr^{3+} ; 4) Cu^{2+} , Hg^+ , Co^{2+} , Ni^{2+} .	,	
а) нет группового реагента; в) раствор гидроксида натрия; б) раствор хлороводородной кислоты; г) раствор серной кислоты. A9. При взаимодействии катиона цинка Zn^{2+} с групповым реагентом протекает следующая реакция: 1) $3ZnCl_2 + 2K_3[Fe(CN)_6] = Zn_3[Fe(CN)_6]_2 + 6KCl;$ 2) $ZnCl_2 + 2NaOH = Zn(OH)_2 + 2NaCl;$ 3) $ZnCl_2 + (NH_4)_2S = ZnS + 2NH_4Cl;$ 4) $ZnSO_4 + H_2S = ZnS + H_2SO_4.$ A 10. Раствор гексацианоферрата калия (желтой кровяной соли) $K_4[Fe(CN)_6]$ является качественным на катионы: 1) Fe^{3+} ; 2) Fe^{2+} ; 3) Mg^{2+} ; 4) Ba^{2+} . A11. К катионам 3 аналитикой группы относятся: 1) Fe^{2+} , Fe^{3+} , Mn^{2+} , Bi^+ , Mg^{2+} ; 2) Ba^{2+} , Ca^{2+} , Sr^{2+} ; 3) Al^{3+} , Zn^{2+} , Cr^{3+} ; 4) Cu^{2+} , Hg^+ , Co^{2+} , Ni^{2+} .	, -	
б) раствор хлороводородной кислоты; г) раствор серной кислоты. А9. При взаимодействии катиона цинка Zn^{2+} с групповым реагентом протекает следующая реакция: 1) $3ZnCl_2 + 2K_3[Fe(CN)_6] = Zn_3[Fe(CN)_6]_2 + 6KCl;$ 2) $ZnCl_2 + 2NaOH = Zn(OH)_2 + 2NaCl;$ 3) $ZnCl_2 + (NH_4)_2S = ZnS + 2NH_4Cl;$ 4) $ZnSO_4 + H_2S = ZnS + H_2SO_4.$ A 10. Раствор гексацианоферрата калия (желтой кровяной соли) $K_4[Fe(CN)_6]$ является качественным на катионы: 1) Fe^{3+} ; 2) Fe^{2+} ; 3) Mg^{2+} ; 4) Ba^{2+} . A11. К катионам 3 аналитикой группы относятся: 1) Fe^{2+} , Fe^{3+}		
А9. При взаимодействии катиона цинка Zn^{2+} с групповым реагентом протекает следующая реакция: 1) $3ZnCl_2 + 2K_3[Fe(CN)_6] = Zn_3[Fe(CN)_6]_2 + 6KCl;$ 2) $ZnCl_2 + 2NaOH = Zn(OH)_2 + 2NaCl;$ 3) $ZnCl_2 + (NH_4)_2S = ZnS + 2NH_4Cl;$ 4) $ZnSO_4 + H_2S = ZnS + H_2SO_4.$ A 10. Раствор гексацианоферрата калия (желтой кровяной соли) $K_4[Fe(CN)_6]$ является качественным на катионы: 1) Fe^{3+} ; 2) Fe^{2+} ; 3) Mg^{2+} ; 4) Ba^{2+} . A11. К катионам 3 аналитикой группы относятся: 1) Fe^{2+} , Fe^{3+} , Mn^{2+} , Bi^+ , Mg^{2+} ; 2) Ba^{2+} , Ca^{2+} , Sr^{2+} ; 3) Al^{3+} , Zn^{2+} , Cr^{3+} ; 4) Cu^{2+} , Hg^+ , Co^{2+} , Ni^{2+} .	,	
следующая реакция: $1)\ 3ZnCl_2+2K_3[Fe(CN)_6]=Zn_3\left[Fe(CN)_6\right]_2+6KCl;$ $2)\ ZnCl_2+2NaOH=Zn(OH)_2+2NaCl;$ $3)\ ZnCl_2+(NH_4)_2S=ZnS+2NH_4Cl;$ $4)\ ZnSO_4+H_2S=ZnS+H_2SO_4.$ $\textbf{A 10.}\ Pactbor rekcaluahoфeppata калия (желтой кровяной соли) K_4[Fe(CN)_6] является качественным на катионы: 1)\ Fe^{3+}; \qquad 2)\ Fe^{2+}; 3)\ Mg^{2+}; \qquad 4)\ Ba^{2+}. \textbf{A11.}\ K\ катионам\ 3\ аналитикой\ группы\ относятся: \\1)\ Fe^{2+},Fe^{3+},Mn^{2+},Bi^+,Mg^{2+}; \qquad 2)\ Ba^{2+},Ca^{2+},Sr^{2+}; 3)\ Al^{3+},Zn^{2+},Cr^{3+}; \qquad 4)\ Cu^{2+},Hg^+,Co^{2+},Ni^{2+}.$		
1) $3ZnCl_2 + 2K_3[Fe(CN)_6] = Zn_3[Fe(CN)_6]_2 + 6KCl;$ 2) $ZnCl_2 + 2NaOH = Zn(OH)_2 + 2NaCl;$ 3) $ZnCl_2 + (NH_4)_2S = ZnS + 2NH_4Cl;$ 4) $ZnSO_4 + H_2S = ZnS + H_2SO_4.$ A 10. Раствор гексацианоферрата калия (желтой кровяной соли) $K_4[Fe(CN)_6]$ является качественным на катионы: 1) Fe^{3+} ; 2) Fe^{2+} ; 3) Mg^{2+} ; 4) Ba^{2+} . A11. К катионам 3 аналитикой группы относятся: 1) Fe^{2+} , Fe^{3+} , Mn^{2+} , Bi^+ , Mg^{2+} ; 2) Ba^{2+} , Ca^{2+} , Sr^{2+} ; 3) Al^{3+} , Zn^{2+} , Cr^{3+} ; 4) Cu^{2+} , Hg^+ , Co^{2+} , Ni^{2+} .	_	цинка Zn ²⁺ с групповым реагентом протекает
2) $ZnCl_2 + 2NaOH = Zn(OH)_2 + 2NaCl;$ 3) $ZnCl_2 + (NH_4)_2S = ZnS + 2NH_4Cl;$ 4) $ZnSO_4 + H_2S = ZnS + H_2SO_4.$ A 10. Раствор гексацианоферрата калия (желтой кровяной соли) $K_4[Fe(CN)_6]$ является качественным на катионы: 1) Fe^{3+} ; 2) Fe^{2+} ; 3) Mg^{2+} ; 4) Ba^{2+} . A11. К катионам 3 аналитикой группы относятся: 1) Fe^{2+} , Fe^{3+} , Mn^{2+} , Bi^+ , Mg^{2+} ; 2) Ba^{2+} , Ca^{2+} , Sr^{2+} ; 3) Al^{3+} , Zn^{2+} , Cr^{3+} ; 4) Cu^{2+} , Hg^+ , Co^{2+} , Ni^{2+} .	•	
3) $ZnCl_2 + (NH_4)_2S = ZnS + 2NH_4Cl;$ 4) $ZnSO_4 + H_2S = ZnS + H_2SO_4.$ А 10. Раствор гексацианоферрата калия (желтой кровяной соли) $K_4[Fe(CN)_6]$ является качественным на катионы: 1) $Fe^{3+};$ 2) $Fe^{2+};$ 3) $Mg^{2+};$ 4) $Ba^{2+}.$ А11. К катионам 3 аналитикой группы относятся: 1) $Fe^{2+}, Fe^{3+}, Mn^{2+}, Bi^+, Mg^{2+};$ 2) $Ba^{2+}, Ca^{2+}, Sr^{2+};$ 3) $Al^{3+}, Zn^{2+}, Cr^{3+};$ 4) $Cu^{2+}, Hg^+, Co^{2+}, Ni^{2+}.$	- ` `	
4) $ZnSO_4 + H_2S = ZnS + H_2SO_4$. А 10. Раствор гексацианоферрата калия (желтой кровяной соли) $K_4[Fe(CN)_6]$ является качественным на катионы: 1) Fe^{3+} ; 2) Fe^{2+} ; 3) Mg^{2+} ; 4) Ba^{2+} . А11. К катионам 3 аналитикой группы относятся: 1) Fe^{2+} , Fe^{3+} , Mn^{2+} , Bi^+ , Mg^{2+} ; 2) Ba^{2+} , Ca^{2+} , Sr^{2+} ; 3) Al^{3+} , Zn^{2+} , Cr^{3+} ; 4) Cu^{2+} , Hg^+ , Co^{2+} , Ni^{2+} .	,	
А 10. Раствор гексацианоферрата калия (желтой кровяной соли) $K_4[Fe(CN)_6]$ является качественным на катионы: 1) Fe^{3+} ; 2) Fe^{2+} ; 3) Mg^{2+} ; 4) Ba^{2+} . А11. К катионам 3 аналитикой группы относятся: 1) Fe^{2+} , Fe^{3+} , Mn^{2+} , Bi^+ , Mg^{2+} ; 2) Ba^{2+} , Ca^{2+} , Sr^{2+} ; 3) Al^{3+} , Zn^{2+} , Cr^{3+} ; 4) Cu^{2+} , Hg^+ , Co^{2+} , Ni^{2+} .	`	;
качественным на катионы: $1) \ Fe^{3+}; \qquad 2) \ Fe^{2+}; \\ 3) \ Mg^{2+}; \qquad 4) \ Ba^{2+}. \\ \textbf{А11.} \ K \ катионам 3 \ аналитикой группы относятся: \\ 1) \ Fe^{2+}, Fe^{3+}, Mn^{2+}, Bi^+, Mg^{2+}; \qquad 2) \ Ba^{2+}, Ca^{2+}, Sr^{2+}; \\ 3) \ Al^{3+}, Zn^{2+}, Cr^{3+}; \qquad 4) \ Cu^{2+}, Hg^+, Co^{2+}, Ni^{2+}.$,	
1) Fe ³⁺ ; 2) Fe ²⁺ ; 3) Mg ²⁺ ; 4) Ba ²⁺ . A11. К катионам 3 аналитикой группы относятся: 1) Fe ²⁺ , Fe ³⁺ , Mn ²⁺ , Bi ⁺ , Mg ²⁺ ; 2) Ba ²⁺ , Ca ²⁺ , Sr ²⁺ ; 3) Al ³⁺ , Zn ²⁺ , Cr ³⁺ ; 4) Cu ²⁺ , Hg ⁺ , Co ²⁺ , Ni ²⁺ .		калия (желтой кровяной соли) $K_4[Fe(CN)_6]$ является
3) Mg ²⁺ ; 4) Ba ²⁺ . A11. К катионам 3 аналитикой группы относятся: 1) Fe ²⁺ , Fe ³⁺ , Mn ²⁺ , Bi ⁺ , Mg ²⁺ ; 2) Ba ²⁺ , Ca ²⁺ , Sr ²⁺ ; 3) Al ³⁺ , Zn ²⁺ , Cr ³⁺ ; 4) Cu ²⁺ , Hg ⁺ , Co ²⁺ , Ni ²⁺ .		
A11. К катионам 3 аналитикой группы относятся: 1) Fe ²⁺ , Fe ³⁺ , Mn ²⁺ , Bi ⁺ , Mg ²⁺ ; 2) Ba ²⁺ , Ca ²⁺ , Sr ²⁺ ; 3) Al ³⁺ , Zn ²⁺ , Cr ³⁺ ; 4) Cu ²⁺ , Hg ⁺ , Co ²⁺ , Ni ²⁺ .		
1) Fe ²⁺ , Fe ³⁺ , Mn ²⁺ , Bi ⁺ , Mg ²⁺ ; 2) Ba ²⁺ , Ca ²⁺ , Sr ²⁺ ; 3) Al ³⁺ , Zn ²⁺ , Cr ³⁺ ; 4) Cu ²⁺ , Hg ⁺ , Co ²⁺ , Ni ²⁺ .	, ,	
3) Al ³⁺ , Zn ²⁺ , Cr ³⁺ ; 4) Cu ²⁺ , Hg ⁺ , Co ²⁺ ,Ni ²⁺ .	1.5	
, , , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , , ,	
10	3) Al 3 , Zn 2 , Cr 3 ; 4) Cu ²⁺ , Hg ⁺ , Co ²⁺ ,Ni ²⁺ .
		10

А12. При взаимод	ействии хлорида жел	еза FeCl ₃ с роданидом калия KSCN образуется
осадок:		
1) желтый;	2) белый;	
3) кроваво-краснь	ій; 4) синий.	
		К с винной кислотой образуется соединение:
•	2) K ₂ Na[Co(NO	- ·
,	4) KHC ₂ H ₆ O _{6.}	-7-3 <i>7</i>
		м для катионов 6 аналитической группы:
_	= -	2) раствор серной кислоты;
3) раствор аммиан		4) нет группового реагента.
, 1		, , ,
А15. В какой цвет	окрашивают пламя и	лоны кальция Ca^{2+} :
1) желтый;	2) кирпично-кра	асный;
3) зеленый;	4) бесцветный.	
		Часть В
В1.Составьте схему ан	ализа раствора, соде	ржащего катионы I и II аналитических групп.
	Bap	иант 2
	Ча	сть А
	аналитикой группы	
1) Na ⁺ , NH ₄ ⁺ , K ⁺ ;	2) Ba^{2+} , Ca^2	+, Sr ²⁺ ;
3) Ag^+ , Hg_2^+ , Pb^{2+}	; 4) Cu ²⁺ , Hg	$^{+}$, Co^{2+} , Ni^{2+} .
А2. В какой цвет	окрашивают пламя	ионы калия К:
1) зеленый;	2) фиолетовый	•
3) желтый;	4) красный.	
А3. На какой кат	ион реакция с соляно	ой кислотой HCl является качественной:
1) Na ⁺ ;	2) Ca^{2+} ;	
3) Ag^{+} ; 4		
, •	•	м для катионов 1 аналитической группы:
1) нет группового	= -	2) раствор гидроксида натрия;
, I •		; 4) раствор серной кислоты.
		ои взаимодействии нитрата серебра AgNO ₃ с
тиосульфатом натрия N		он взаимоденетвии питрата сереора Адгозе
1) бурый;	а25203. 2) зелені	т й .
/ • I	<i>'</i>	
·	уреет; 4) черни	
		альция Ca ²⁺ с групповым реагентом:
, , , ,	$_{2}CO_{3} = CaCO_{3} + 2NHA$	4Cl;
· · · · · · · · · · · · · · · · · · ·	$_4 = \text{CaSO}_4 + 2\text{HCl};$	
, , , , , , , , , , , , , , , , , , ,	$)_2C_2O_4 = CaC_2O_4 + 2N$	
*	- , , -	$a(NH_4)_2[Fe(CN)_6] + 4KCl.$
= -	гат взаимодействия с	олей марганца Mn ²⁺ с сульфидом аммония
$(NH_4)_2S$:		
1) осалок теле	CHOLO HIBELA.	2) пепец синего пвета:

3) ярко красное окрашивание; 4) осадок желтого цвета. А8. К катионам 5 аналитикой группы относятся: 2) Ba²⁺, Ca²⁺, Sr²⁺; 1) Na^+ , NH_4^+ , K^+ ; 4) Fe²⁺, Fe³⁺, Mn²⁺, Bi⁺, Mg²⁺. 3) Ag^+ , Hg_2^+ , Pb^{2+} ; А9. Какой реагент является групповым для катионов 4 аналитической группы: 1) раствор хлороводородной кислоты; 2) раствор серной кислоты; 3) раствор аммиака; 4) раствор гидроксида натрия. **A10.** При взаимодействии хлорида бария BaCl₂ с дихроматом калия K₂Cr₂O₇ образуется осадок: 1) BaCr₂O₇; 2) BaCrO₄; 3) Ba₂Cr₂O;₇ 4) BaCr₂O_{4.} **A11.** Реакция взаимодействия солей свинца Pb^{2+} с групповым реагентом: 1) $Pb(NO_3)_2 + 2KOH = Pb(OH)_2 + 2KNO_3$; 2) $Pb(NO_3)_2 + 2HCl = PbCl_2 + 2HNO_3$; 3) $Pb(NO_3)_2 + H_2SO_4 = PbSO_4 + 2HNO_3$; 4) $Pb(NO_3)_2 + 2KI = PbI_2 + 2KNO_3$. А12. Какой реагент является групповым для катионов 5 аналитической группы: 2) раствор серной кислоты; 1) нет группового реагента; 3) раствор аммиака; 4) раствор гидроксида натрия. **A13.** Какого цвета осадок образуется при взаимодействии катионов свинца Pb^{2+} с хроматом калия K₂CrO₄: 1) желтый; 2) красно-бурый; 3) желто-зеленый; 4) белый. **A14.** При взаимодействии хлора кальция $CaCl_2$ с оксалатом аммония $(NH_4)_2C_2O_4$ образуется осадок: 1) красный; желтый; белый; 4) зеленый.

A15. В какой цвет окрашивают пламя ионы бария Ba^{2+} :

1) желто-зеленый; 2) красный;

3) желтый; 4) синий.

Часть В

В1.Составьте схему анализа раствора, содержащего катионы IV и V аналитических групп.

Контрольная работа составлена в 2-х вариантах.

Каждый вариант состоит из двух частей. Эти части выделяются.

Часть А состоит из 15 заданий с выбором правильного ответа из четырех предложенных вариантов (все 15 заданий базового уровня сложности). Правильный ответ оценивается в 1 балл.

Часть В содержит задание на составление схемы анализа катионов. Правильный ответ оценивается в 2 балла.

Критерии оценивания:

Процент результативности (правильных	Оценка уровня подготовки					
ответов)	балл (отметка)	вербальный аналог				
90 ÷ 100 (16-17 баллов)	5	отлично				
80 ÷ 89 (14-15 баллов)	4	хорошо				
70 ÷ 79 (12-13 баллов)	3	удовлетворительно				
менее 70 (менее 12 баллов)	2	неудовлетворительно				

Ключ к тестовому заданию

№	Α	Α	A	Α	Α	Α	Α	Α	Α	A10	A11	A12	A13	A14	A15
варианта/	1	2	3	4	5	6	7	8	9						
$\mathcal{N}_{\underline{\mathbf{o}}}$															
задания															
1	1	3	2	3	1	2	3	1	2	1	2	3	1	3	2
2	3	2	3	1	3	2	1	4	4	2	2	4	1	3	1

Правильное решение части В.

Вариант 1.

В1. Обнаружение катионов в анализируемом растворе проводят в соответствии со схемой хода анализа смеси катионов I и II аналитических групп, которая приведена на рис. 1 и показывает последовательность проведения отдельных операций.

Вариант 2.

В1. Обнаружение катионов в анализируемом растворе проводят систематическим методом в соответствии со схемой хода анализа смеси катионов IV и V аналитических групп, которая приведена на рис.2 и показывает последовательность проведения отдельных операций.

Вариант 1.

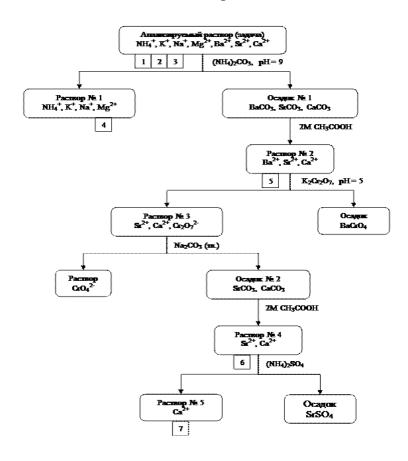


Рис 1. Схема хода анализа смеси катионов I и II аналитических групп. Вариант 2.

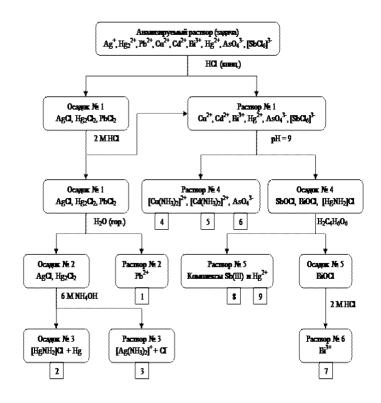


Рис. 2. Схема хода анализа катионов IV и V аналитических групп.

Контрольная работа по разделу: «Качественный анализ».

Вариант 1 Часть А

А1. К анионам 1 аналитикой группы относятся: 2) Cl⁻;

1) B₄O₇²⁻;

	3) NO ₃ -;	4) CO ₃ ² -;										
	А2. Какой реаге	нт является	групповым для анионов 2 аналитической группы:									
	1) раствор BaCl ₂		2) раствор AgNO ₃ ;									
	3) нет групповог	то реагента;	4) раствор НС1.									
	А3. При взаимод	тействии ни	трат и нитрит ионов с раствором соли железа									
образ	вуется:											
-	1) оксид азо	та NO ₂ ;	2) оксид азота NO;									
	3) оксид жел	геза Fe ₂ O ₃ ;	4) оксид железа FeO.									
			разуется при взаимодействии сульфат-иона с групповым									
реаге	ентом?	_										
_	1) белый;	2)	красно-бурый;									
	3) желто-зелены	й; 4)	желтый.									
	А5. Какого цвет	а осадок обр	разуется при взаимодействии хлорид-иона с групповым									
реаге	ентом?											
	1) черный;											
	 белый; 											
спапу	-	модеиствии	и хромат-иона с групповым реагентом протекает									
следу	ующая реакция: 1) BaCl ₂ + K ₂ CrC	$O_4 = BaCrO_4$	+2KCl:									
	2) $2AgNO_3 + K_2O_3$		•									
	, .	_	$O_4\downarrow + 2KC1 + 2HC1;$									
	4) $K_2Cr_2O_7 + 4H_2$	$O_2 + 2HNO_3$	$_{3} = 2H_{2}CrO_{6} + 3KNO_{3} + 3H_{2}O.$									
			й группы относятся:									
	1) $B_4O_7^{2-}$;	2) Br ⁻ ;										
	3) NO ₃ -;	4) CO_3^{2-}	· ·									
	А8. Какой реаге	нт является	групповым для анионов 1 аналитической группы:									
	1) раствор NaOH	I;	2) pacтвор AgNO ₃ ;									
	3) нет групповог	го реагента;	4) раствор BaCl _{2.}									
	А9. При взаимод	цействии ни	трит-ионов с реактивом Грисса-Лунге образуется:									
			; 2) красное окрашивание;									
			е; 4) белое окрашивание.									
груп	А10. Какого цве повым реагентом:	та осадок ос	бразуется при взаимодействии сульфит-иона с									
труш	1) желтый;	2) красно-(ก็งกุมหั <i>:</i>									
	3) белый;											
	-	,	бразуется при взаимодействии йодид-иона с нитратом									
свин												
	· -		ий кристаллический;									
	3) белый;	, <u>-</u>										
	А12. Ацетат-ион											
	1) уксусной кисл		2) хлороводородной кислоты;4) азотной кислоты.									
	э) этилуксусной	кислоты,	T) ASULTON RECTOIDS.									
			15									

1) CO_2^- ; 2) CO_3^2 ; 3) $C_2O_4^{2-}$; 4) SO₄²-; А14. К анионам 3 аналитикой группы относятся: 1) $B_4 Q^{2}$; 2) Br; 3) NO_3^- ; 4) Cl⁻. А15. Какой реагент является групповым для анионов 3 аналитической группы: 1) pactbop BaCl₂; 2) pactbop AgNO₃; 3) раствор HCl; 4) нет группового реагента. Часть В В1. В чем заключается качественный анализ? Вариант 2 Часть А А1. К анионам 1 аналитикой группы относятся: 1) B_4Q^{2} ; 2) Cl⁻; 3) NO_3^- ; 4) SCN⁻; А2. Какой реагент является групповым для анионов 3 аналитической группы: 1) pacтвор BaCl₂; 2) pactbop AgNO₃; 4) раствор NaOH. 3) нет группового реагента; А3. Анализ сухой соли необходимо начинать с: 1) растворения соли; 2) подбора растворителя; 4) охлаждения. 3) нагревания; **А4.** К анионам II аналитической группы относятся анионы: 1) SO_4^2 ; S^2 ; NO_3^- ; 2) S0₄²-; NO₃⁻; S⁻; 3) S^2 ; $C1^-$; I^- ; 4) NO₃, NO₂, CH₃COO⁻. А5. Какой реагент является групповым для анионов 2 аналитической группы: 1) раствор BaCl₂; 2) pactbop AgNO₃; 3) нет группового реагента; 4) раствор НС1. А6. При взаимодействии фосфат-иона с групповым реагентом протекает реакция: 1) NaHPO₄ + BaCl₂ = BaHPO₄ \downarrow +2NaCl; 2) $Na_3PO_4 + 3AgNO_3 = AgPO_4 \downarrow +3NaNO_3$; 3) $Na_2HPO_4 + MgCl_2 + NH_4OH = MgNH_4PO_4 + 2NaCl + H_2O;$ 4) $Na_2HPO_4 + 12(NH_4)_2MoO_4 + 23HNO_3 = (NH_4)_3H_4[P(Mo_2O_7)_6] + 10H_2O$. А7. Какого пвета осалок образуется при взаимодействии карбонат-иона с групповым реагентом: 1) желтый; 2) красно-бурый; 3) белый; 4) синий. **А8.** Большинство солей, образованных анионами III аналитической группы: 1) плохо растворимы в воде; 2) имеют групповой реактив; 3) хорошо растворимы в воде; 4) не имеют группового реактива. А9. Какого цвета образуется раствор при взаимодействии йодид-иона с хлорной волой: 1) черный; 2) малиновый; 3) желтый; 4) белый.

A13. Оксалат-ион – это:

A10. Большинство анионов I аналитической группы с групповым реактивом образуют соли:

не растворимые в воде;
 растворимые в воде;
 растворимые в воде;
 растворимые в щелочах.

A11. Ацетат-ион – это анион:

1) азотной кислоты; 2) хлороводородной кислоты;

3) этилуксусной кислоты; 4) уксусной кислоты.

A12. Какого цвета осадок образуется при взаимодействии йодид-иона с нитратом свинца?

1) черный; 2) желтый кристаллический;

3) белый; 4) красно-бурый.

А13. Для открытия нитрат и нитрит-ионов применяют:

- 1) окислительно-восстановительные реакции;
- 2) реакции осаждения;
- 3) кислотно-основные реакции;
- 4) индикаторную бумагу.

А14. При взаимодействии сульфит-иона с групповым реагентом протекает реакция:

- 1) $BaCl_2 + Na_2CO_3 = BaCO_3 \downarrow +2NaCl;$
- 2) $Na_2SO_3 + BaCl_2 = BaSO_3 \downarrow +2NaCl$;
- 3) $Na_2SO_3 + 2AgNO_3 = Ag_2SO_3 + 2NaNO_3$;
- 4) $Na_2SO_3 + I_2 + H_2O = Na_2SO_4 + 2HI$.

А15. Групповым реактивом на анионы I аналитической группы является раствор:

нитрата серебра;
 хлорида бария;
 сульфат серебра.

Часть В

В1. Где применяются анионы 3 аналитической группы?

Контрольная работа составлена в 2-х вариантах.

Каждый вариант состоит из двух частей. Эти части выделяются.

Часть А состоит из 15 заданий с выбором правильного ответа из четырех предложенных вариантов (все 15 заданий базового уровня сложности). Правильный ответ оценивается в 1 балл.

Часть В содержит теоретический вопрос по группам анионов. Правильный ответ оценивается в 2 балла.

Критерии оценивания:

Процент результативности (правильных	Оценка уровня подготовки						
ответов)	балл (отметка)	вербальный аналог					
90 ÷ 100 (16-17 баллов)	5	ончил					
80 ÷ 89 (14-15 баллов)	4	хорошо					
70 ÷ 79 (12-13 баллов)	3	удовлетворительно					
менее 70 (менее 12 баллов)	2	неудовлетворительно					

Ключ к тестовому заданию

No	A1	A	A	A	A	A	A	A	A	A10	A11	A12	A13	A14	A15
варианта/		2	3	4	5	6	7	8	9						
№ задания															
1	4	2	2	1	3	1	2	4	2	3	2	1	3	3	4
2	1	3	2	3	2	1	3	4	2	1	4	2	1	2	3

Контрольная работа по разделу: «Количественный анализ»

Вариант 1 Часть А

3) в точном измерении массы составных частей вещества, выделяемых в химически чистом состоянии или в виде труднорастворимого соединения;

3) 0,01 г.

2) соединение, полученное при осаждении определяемой составной части;

3) соединение, полученное после просушивания осадка при 150° С;

4) 0,1 г.

А 1. В чем заключается сущность весового анализа?

2) 0,0002 г.

1) соединение, полученное после прокаливания;

2) в точном измерении массы осадителя;

4) в измерении объемов растворов.

А3. Что такое осаждаемая форма осадка?

А4. Способы очистки осадка от загрязнений:

1) 0,002 г.

1) в точном измерении массы определяемого вещества;

А2. Какова точность взвешивания на аналитических весах?

4) соединение, взвешиваемое на аналитических весах.

1) промывание;	2) прокаливание;
3) центрифугирование;	4) высушивание при температуре 100-120 °C.
А5. Гравиметрическую фо	рму из осаждаемой получают:
1) фильтрацией осадка;	
2) охлаждением осаждаемо	ой формы;
3) декантацией осадка;	
4) прокаливанием осадка в	муфельной печи.
А6. Осадители, применяем	ые для осаждения серебра в виде AgCl:
1) NH ₃ ; 2) NaCl;	
3) HCl; 4) KCl.	
	денными до постоянной массы, если результаты их
взвешивания после предыдущих п	прокаливаний отличаются на:
1) 0,005 r; 2) 0,0004	г; 3) 0,03 г; 4) 0,2 г.
А8. Минимальная масса на	авески анализируемого вещества в гравиметрическом
анализе:	
1) 0,5 r; 2) 0,4 r; 3) 0,3	
А9. При гравиметрическом	и определении бария его чаще всего осаждают в виде:
1) $BaSO_4$; 2) BaC_2O_4 ; 3)	$BaCO_3$; 4) $Ba(OH)_2$.
A10. Чем лучше осаждать	
1) $(NH_4)_2C_2O_4$; 2) Na	
	ристаллизовывают вещество?
1) для получения более	** * * * * * * * * * * * * * * * * * *
2) для получения мелки	
, · · · · · · · · · · · · · · · · · · ·	тва в более чистом виде;
4) для получения смеша	
А12. Найдите фактор пере	
1) 0,7; 2) 0,8998;	
	ребований предъявляются к весовой форме осадка?
Осадок должен обладать:	
1) высокой гигроскопи	
2) достаточной химиче	
	тава осадка его химической формуле;
4) негигроскопичность	
A14. Какое из указанных с	оединений наиболее всего пригоден в качестве
	18

весовой формы при определении железа? 3) Fe_2O_3 ; 4) FeO. 1) $Fe(OH)_3$; 2) Fe(OH)₂; А15. В каких случаях можно осадки прокаливать вместе с фильтром? 1) если осадок взаимодействует с углеродом обуглившегося фильтра; 2) если осадок гигроскопичен; 3) если осадок негигроскопичен; 4) если осадок не взаимодействует с углеродом обуглившегося фильтра. Часть В **В1.** Какую навеску сульфата железа FeSO₄·7H₂O следует взять для определения в нем железа в виде Fe_2O_3 , считая норму осадка равной 0,2 г? Вариант 2 Часть А А1. Что такое весовая форма осадка? 1) осадок, полученный после прокаливания; 2) осадок, полученный при осаждении; 3) определяемое вещество; 4) осадок, после операции созревания; А2. Какой должна быть определяемая составная часть в навеске при определении бария, осаждаемого в виде BaSO₄? 1) 0,5 г. 2) 0,1 г. 3) 0,2 г. 4) 0,07 г. А3. Какие требования должны предъявлять к осаждаемой форме осадка? Осадок должен обладать: 1) высокой растворимостью; 2) трудно переходить в весовую форму; 3) кристаллической структурой; 4) легко переходить в весовую форму. А4. Чем лучше осаждать ионы Ад: 2) KC1; 3) NaCl; 4) CaCl 2. 1) HCl; **А5.** Найдите фактор пересчета A1 по Al_2O_3 ? 2) 0,3430; 3) 0,5294; 4) 0,4291. 1) 0,4672; А6. В каких случаях осадок нельзя прокаливать вместе с фильтром? 1)если осадок негигроскопичен; 2) если осадок не взаимодействует с углеродом обуглившегося фильтра; 3) если осадок гигроскопичен; 4) если осадок взаимодействует с углеродом обуглившегося фильтра. А7. Для чего добавляют избыток осадителя: 1) для получения крупных кристаллов; 2) для полноты осаждения; 3) для получения посторонних ионов; 4) для предотвращения образования коллоидных растворов. **А8.** Как повлияет на растворимость осадка CaC₂O₄ присутствие в растворе $(NH_4)_2C_2O_4$? 1) понизит растворимость осадка; 2) повысит растворимость осадка; 3) не скажется на растворимости; 4) растворимость увеличится.

- 2) тигли;
- 3) бюретки; 4) пипетки.
- А10. Прокаливание осадка осуществляют в:

А9. В методе гравиметрия применяется посуда:

1) муфельной печи;

- 2) сушильном шкафу;
- 3) электроплитке;
- 4) эксикаторе.
- **A11.** Тигли считаются доведенными до постоянной массы, если результаты их взвешивания после предыдущих прокаливаний отличаются на:
 - 1) 0,005 r;
- 2) 0,0004 r;
- 3) 0,03 r;
- 4) 0,2 Γ
- А12. Способы очистки осадка от загрязнений:
- 1) промывание;
- 2) прокаливание;
- 3) центрифугирование; 4) высушивание при температуре 100-120 °C.
- А13. Что такое гравиметрический фактор:
- 1) отношение молярной массы определяемого компонента к молярной массе гравиметрической формы;
 - 2) отношение массовой доли определяемого вещества к молярной массе;
 - 3) отношение процентной концентрации компонента к молярной массе;
- 4) отношение молярной массы гравиметрической формы к молярной массе определяемого компонента.
- А14. Какова точность взвешивания на аналитичеких весах?
 - 1) 0,002 г.
- 2) 0,0002 г.
- 3) 0.01 г.
- 4) 0,1 г.

А15. В каком случае осадок будет лучше промыт, если промывать его:

- 1) 2 раза по 50 мл;
- 3) 10 раз по 10 мл;
- 2) 3 раза по 30 мл;
- 4) 5 раз по 20 мл.

Часть В

В1. После соответствующей обработки раствора 0.9г KAI(SO₄)₂ получено 0.0967г осадка AI₂O₃. Найти массовую долю (%) алюминия в исследуемом веществе.

Контрольная работа составлена в 2-х вариантах.

Каждый вариант состоит из двух частей. Эти части выделяются.

Часть А состоит из 15 заданий с выбором правильного ответа из четырех предложенных вариантов (все 15 заданий базового уровня сложности). Правильный ответ оценивается в 1 балл.

Часть В содержит задачу по гравиметрическим определениям. Правильный ответ оценивается в 3 балла.

Критерии оценивания:

Tenrepain ogenisamin.											
Процент результативности (правильных	Оценка уровня подготовки										
ответов)	балл (отметка)	вербальный аналог									
90 ÷ 100 (17-18 баллов)	5	отлично									
80 ÷ 89 (15-16 баллов)	4	хорошо									
70 ÷ 79 (13-14 баллов)	3	удовлетворительно									
менее 70 (менее 13 баллов)	2	неудовлетворительно									

Ключ к тестовому заданию

No	A1	A	A	A	A	A	A	A	A	A10	A	A	A	A	A	B1
варианта/		2	3	4	5	6	7	8	9		11	12	13	14	15	
№ задания																
1	3	2	2	1	4	3	2	4	1	1	3	1	2	3	4	0,7Γ
2	1	2	4	1	3	4	2	3	2	1	2	1	1	2	3	5,69%

Контрольная работа на разделу: «Количественный анализ».

Вариант 1

1. К физико-химическим методам анализа относятся:

- А) нейтрализация; Б) комплексонометрия;
- В) потенциометрический анализ; Г) качественный анализ.

2. На ФЭКе определяют:

- A) оптическую плотность;B) рН раствора;Б) показатель преломления;Γ) температуру кипения.
- 3. Растворы сравнения это:
- а) растворы, с точно известной концентрацией;
- б) рабочие растворы;
- в) растворы, содержащие все компоненты, кроме определяемого вещества;
- г) насыщенные растворы.

4. Потенциометрическое титрование применяют:

- А) для анализа катионов;
- Б) для определения показателя преломления;
- В) для анализа неэлектролитов;
- Г) при анализе мутных и тёмноокрашенных растворов.

5. В качестве электрода сравнения используют:

- А) стеклянный;
- Б) ртутный;
- В) водородный; Г) каломельный.

6. Вольтамперометрия основана на:

- А) изучении поляризационных кривых;
- Б) исследовании силы тока в зависимости от внешнего напряжения;
- В) определении качественного и количественного состава веществ, не способных окисляться и восстанавливаться;
- Γ) определении точки эквивалентности при исследовании мутных и тёмноокрашенных растворов.

7. Хроматография:

- А) метод анализа веществ по показателю преломления;
- Б) метод разделения и анализа смесей веществ по их сорбционной способности;
- В) метод анализа веществ по их способности отклонять поляризованный луч;
- Γ) метод анализа, основанный на поглощении веществами электромагнитного излучения.

8. С помощью ионно-обменной хроматографии можно:

- А) разделять неэлектролиты;
- Б) умягчать жёсткую воду;
- В) определять концентрацию этилового спирта;
- Γ) разделять электролиты.

9. Спектральные методы анализа:

- А) основаны на измерении интенсивности электромагнитного излучения, которое поглощается или испускается анализируемым веществом;
- Б) основаны на измерении поглощения веществом электромагнитного излучения в видимой и ближней ультрафиолетовой области спектра;
 - В) основаны на исследовании спектров отражения веществ;
- Γ) основаны на изучении взаимодействия веществ с электромагнитным излучением.

10. Фотометрия пламени - это:

- А) разновидность атомно-эмиссионного анализа;
- Б) разновидность атомно-абсорбционного анализа;

- В) разновидность электрохимического анализа;
- Г) разновидность хроматографического анализа.

11. Фотометрический анализ основан:

- А) на анализе сорбционной способности различных веществ при прохождении через поглотитель;
 - Б) на измерении поглощения излучения оптического диапазона;
- В) на исследовании способности молекул деформироваться под действием ультрафиолетового излучения;
 - Г) на различной проходимости веществ через фильтр.

12. Нефелометрия позволяет:

- А) анализировать мутные растворы;
- Б) анализировать прозрачные окрашенные растворы;
- В) определять размер частиц в коллоидных растворах;
- Г) определять концентрацию растворённых веществ по показателю преломления

13. Люминесцентный анализ:

- А) разновидность фосфоресценции;
- Б) используется для анализа веществ, способных светиться под действием УФ лучей;
- В) используется для определения интенсивности поглощения излучения анализируемым веществом;
- Γ) явление, позволяющее определять концентрацию веществ, помещённых в высокочастотное магнитное поле.

14. Чем отличается спектрофотометрический метод анализа от фотоколориметрического метода?

- А) спектрофотометрический анализ основан на поглощении полихроматического света;
- Б) спектрофотометрический анализ основан на поглощении монохроматического света:
 - В) ничем;
- Γ) в спектрофотометрическом анализе обходятся без использования светофильтра или монохроматора.

15. В каких единицах измеряется удельная электрическая проводимость?

- A) моль/л;
- Б) Н/м;
- B) $C_{M/M}$;
- Г) Па*с.

Вариант 2

1. Физико-химические методы анализа относятся к:

- А) инструментальным методам;
- Б) титриметрическим методам;
- В) комплексонометрическим методам; Г) гравиметрическим методам.
- 2. Потенциометрия относится к:
- А) оптическим методам; Б) радиометрическим методам;
- В) электрохимическим методам; Г) абсорбционным методам.

3. В основе потенциометрического метода анализа лежит:

- А) измерение потенциала электродов погружённых в раствор;
- Б) зависимость между составом вещества и его свойствами;
- В) измерение длины волны;
- Г) измерение оптической плотности.

4. Система для измерения электродного потенциала состоит из:

- А) индикаторный электрод; Б) температурный электрод;
- В) электрод сравнения; Г) ртутный электрод.

5. Основу хроматографии составляет:

А) титрование; Б) ионный обмен;

- В) растворение; Г) сорбция.
- 6. Укажите виды хроматографии в зависимости от механизма разделения:
- А) жидкость жидкостная; Б) газо жидкостная;
- В) жидкость твердофазная; Г) колонная.
- 7. Фотоколориметрический анализ:
- А) требует применения монохроматического излучения;
- Б) основан на способности веществ окисляться или восстанавливаться под воздействием видимого излучения;
 - В) требует получения окрашенных форм анализируемых соединений;
 - Г) позволяет определять концентрации мутных и тёмноокрашенных растворов.
 - 8. На чем основаны фотометрические методы анализа?
 - А) на отражении света растворами анализируемых соединений;
 - Б) на избирательном поглощении света растворами анализируемых соединений;
 - В) на свечении, вызванным переходом электрона в возбужденное состояние;
 - Г) на излучении атомов, содержащихся в анализируемом образце.

9. Каково назначение светофильтров, использующихся в фотоколориметрии?

- А) светофильтры пропускают световое излучение лишь в определенном интервале длин волн, которое максимально поглощается раствором;
 - Б) светофильтры пропускают лучи монохроматического света;
 - В) светофильтры пропускают лучи полихроматического света;
- Γ) светофильтры разлагают полихроматический свет на монохроматические составляющие.
- 10. Что является аналитическим сигналом в фотометрических методах анализа?
 - А) максимальная длина волны в спектре поглощения;
 - Б) ширина спектральной линии;
 - В) оптическая плотность раствора;
 - Г) концентрация определяемых компонентов.
- 11. Что понимают под контрастностью фотометрических реакций идентифицируемых соединений?
 - А) сумму длин волн максимумов поглощения идентифицируемых соединений;
 - Б) максимальную длину волны поглощения определяемого элемента;
- В) разность длин волн поглощения определяемого элемента и примесных элементов, присутствующих в растворе;
 - Г) разность длин волн максимумов поглощения идентифицируемых соединений.
 - 12. Какой физический показатель измеряет кондуктометр?
 - А) оптическую плотность;
 - Б) показатель преломления;
 - В) удельную электрическую проводимость;
 - Г) рН.

13. Какой тип измерения используется при нефелометрическом анализе образования иммунных комплексов сразу после добавления регента?

- А) кинетическое; Б) по конечной точке;
- В) непрерывное; Γ) по одной точке.
- 14. Люминесценция это:
- А) изменение потоков видимого света при прохождении через исследуемый раствор;
 - Б) свечение вещества, возникающего после поглощения им энергии возбуждения;
- В) сравнение интенсивности световых потоков, прошедших через стандартный и исследуемый растворы;
 - Г) электрохимические процессы, протекающие на границе двух фаз.

15. Каковы области применения ионообменной хроматографии?

- А) разделение неполярных жидких компонентов и определение состава смесей;
- Б) определение следовых количеств веществ, количественное определение состава смесей;
 - В) качественное определение катионов и анионов в растворах электролитов;
- Γ) определение общей концентрации солей в растворе, очистка растворов от примесей, концентрирование при определении следовых коли.

Контрольная работа составлена в 2-х вариантах.

Каждый вариант состоит из 15 заданий с выбором правильного ответа из четырех предложенных вариантов (все 15 заданий базового уровня сложности). Правильный ответ оценивается в 1 балл.

Критерии оценивания:

Процент результативности (правильных	Оценка уровня подготовки							
ответов)	балл (отметка)	вербальный аналог						
90 ÷ 100 (14-15 баллов)	5	отлично						
80 ÷ 89 (12-13 баллов)	4	хорошо						
70 ÷ 79 (10-11 баллов)	3	удовлетворительно						
менее 70 (менее 10 баллов)	2	неудовлетворительно						

Ключ к тестовому заданию

No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
варианта/															
$\mathcal{N}_{\underline{\circ}}$															
задания															
1	В	Α	В	Γ	Γ	A,	Б	Б,	A,	Α	Б	A,	Б	Б	В
						Б		Γ	Γ			В			
2	A	В	A	A,	Γ	Б	A,	Б	A	В	Γ	В	A	Б	В
				Б,			В								
				В											

Комлект оценочных средств для промежуточной аттестации по итогам освоения дисциплины OП.02 Аналитическая химия

Перечень вопросов для подготовки к экзамену

- 1. Аналитическая химия как наука о методах анализа вещества, ее место в системе наук.
- 2. Характеристики реальных объектов, особенности их анализа.
- 3. Равновесие в гомогенной системе.
- 4. Ионное произведение воды.
- 5. Окислительно-восстановительные реакции в анализе.
- 6. Равновесие в гетерогенных системах.
- 7. Дробное осаждение

- 8. Аналитическая классификация катионов. Характеристика аналитических групп катионов.
- 9. Групповые реагенты, характерные реакции катионов. Условия проведения аналитических реакций.
- 10. Общая характеристика катионов 1 группы.
- 11. Общая характеристика катионов 2 группы
- 12. Общая характеристика катионов 3 группы.
- 13. Общая характеристика катионов 4 группы.
- 14. Общая характеристика катионов 5-6 групп.
- 15. Анализ катионов шести групп.
- 16. Аналитическая классификация анионов.
- 17. Первая аналитическая группа анионов.
- 18. Вторая аналитическая группа анионов. Третья аналитическая группа анионов.
- 19. Задачи и методы количественного анализа.
- 20. Сущность и классификация методов титриметрического анализа.
- 21. Способы выражения концентрации рабочих растворов.
- 22. Классификация методов редоксиметрии.
- 23. Окислительно-восстановительный потенциал и направление окислительно-восстановительных реакций.
- 24. Пермангонатометрия.
- 25. Дихроматометрия.
- 26. Йодометрия.
- 27. Сущность кислотно-основного титрования.
- 28. Фиксирование точки эквивалентности.
- 29. Теоретические основы комплексонометрического титрования.
- 30. Сущность гравиметрического анализа.
- 31. Гравиметрические определения. Расчеты в гравиметрии.
- 32. Сущность физико-химического метода.
- 33. Фотометрический метод. Фотоколориметрический метод.
- 34. Нефелометрический метод. Люминесцентный метод.
- 35. Потенциометрический метод. Кулонометрический метод.
- 36. Хроматографический метод