МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ЛУГАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ ВЛАДИМИРА ДАЛЯ»

КОЛЛЕДЖ СЕВЕРОДОНЕЦКОГО ТЕХНОЛОГИЧЕСКОГО ИНСТИТУТА (филиал) ФГБОУ ВО «ЛГУ им. В. Даля»

КОМПЛЕКТ КОНТРОЛЬНО-ОЦЕНОЧНЫХ СРЕДСТВ для проведения текущего контроля и промежуточной аттестации в форме экзамена по учебной дисциплине

ОП.03 Электротехника и электроника

специальность 23.02.07 Техническое обслуживание и ремонт двигателей, систем и агрегатов автомобилей

РАССМОТРЕН И СОГЛАСОВАН методической комиссией Колледжа Северодонецкого технологического института (филиал) ФГБОУ ВО «ЛГУ им. В. Даля»

Протокол № <u>01</u> от «13» <u>сентября 2024 г.</u>

Председатель комиссии

В.Н. Лескин

Разработан на основе федерального государственного образовательного стандарта среднего профессионального образования по специальности 23.02.07 Техническое обслуживание и ремонт двигателей, систем и агрегатов автомобилей.

[NBmu]

УТВЕРЖДЕН

заместителем директора

Р.П. Филь

Составитель(и):

Железняк Артём Николаевич, преподаватель СПО Колледжа Северодонецкого технологического института (филиал) ФГБОУ ВО «ЛГУ им. В. Даля

1. Паспорт комплекта контрольно-оценочных средств

В результате освоения учебной дисциплины ОП.03 Электротехника и электроника обучающийся должен обладать предусмотренными ФГОС СПО по специальности 23.02.07 Техническое обслуживание и ремонт двигателей, систем и агрегатов автомобилей следующими умениями (У):

- У 1. Пользоваться электроизмерительными приборами;
- У 2. Производить проверку электронных и электрических элементов автомобиля;
- У 3. Производить подбор элементов электрических цепей и электронных схем.

знаниями (3):

- 31. Методов расчета и измерения основных параметров электрических, магнитных и электронных цепей;
 - 32. Компонентов автомобильных электронных устройств;
 - 33. Методов электрических измерений;
 - 34. Устройства и принципа действия электрических машин.

которые формируют профессиональные компетенции (ПК):

- ПК 1.1. Осуществлять диагностику систем, узлов и механизмов автомобильных двигателей.
- ПК 2.1. Осуществлять диагностику электрооборудования и электронных систем автомобилей.
- ПК 2.2. Осуществлять техническое обслуживание электрооборудования и электронных систем автомобилей согласно технологической документации.
- ПК 2.3. Проводить ремонт электрооборудования и электронных систем автомобилей в соответствии с технологической документацией.

и общие компетенции (ОК):

- OК 01. Выбирать способы решения задач профессиональной деятельности применительно к различным контекстам.
- ОК 07. Содействовать сохранению окружающей среды, ресурсосбережению, эффективно действовать в чрезвычайных ситуациях.
- ОК 09. Использовать информационные технологии в профессиональной деятельности.

ОК 10. Пользоваться профессиональной документацией на государственном и иностранном языке.

1. Оценивание уровня освоения учебной дисциплины

Предметом оценивания служат умения и знания, предусмотренные ФГОС СПО по дисциплине ОП.03 Электротехника и электроника, направленные на формирование общих и профессиональных компетенций. Промежуточная аттестация по учебной дисциплине проводится в форме экзамена.

Контроль и оценивание уровня освоения учебной дисциплины по темам (разделам)

Таблица 1

Элемент учебной	Формы и методы контроля			
дисциплины	Текущий контроль		Промежуточная аттестация	
	Форма контроля	Проверяемые ПК, ОК, У, 3	Форма контроля	Проверяемые ПК, ОК, У, 3
Раздел 1. Электротехника				
Тема 1.1. Электрическое поле.	Устный опрос Контрольная работа	ПК1.1, ПК2.1 ОК01, ОК07 У1, У2 31, 32, 33		
Тема 1.2. Электрические цепи постоянного тока.	Устный опрос Практическая работа №1 Практическая работа №2 Практическая работа №3 Практическая работа №4 Контрольная работа	ПК2.2, ПК2.3 ОК01, ОК07 У1, У2, У3 31, 32, 33, 34		
Тема 1.3. Электромагнетизм.	Устный опрос Практическая работа №5 Контрольная работа	ПК2.2, ПК2.3 ОК01, ОК07, ОК10 У2, У3 31, 32, 34		
Тема 1.4. Электрические цепи однофазного переменного тока.	Устный опрос Практическая работа №6 Практическая работа №7 Практическая работа №8	ПК1.1, ПК2.2, ОК01, ОК07, ОК09 У1, У2 31, 32		

	Контрольная работа		
Тема 1.5. Электрические	Устный опрос	ПК1.1, ПК2.1, ПК2.2,	
цепи трёхфазного	Практическая работа №9	ПК2.3	
переменного тока.	Практическая работа №10	OK01, OK07, OK09,	
	Контрольная работа	OK10	
		<i>Y1, Y2, Y3</i>	
		31, 32, 33, 34	
Тема 1.6. Электрические	Устный опрос	$\Pi K1.1, \Pi K2.1, \Pi K2.2,$	
измерения и	Практическая работа №11	ОК01, ОК07, ОК09, У1,	
электроизмерительные	Практическая работа №12	<i>Y2, Y3 31, 32, 33</i>	
приборы.	Контрольная работа		
Тема 1.7. Трансформаторы.	Устный опрос		
	Практическая работа №13	ПК2.1, ПК2.2, ПК2.3	
	Практическая работа №14	OK01, OK07, OK09,	
	Контрольная работа	OK10	
		<i>Y1, Y3 31, 33, 34</i>	
Тема 1.8. Электрические	Устный опрос Практическая		
машины переменного тока.	работа №15 Контрольная	$\Pi K1.1, \Pi K2.1, \Pi K2.2,$	
	работа	ОК01, ОК07, ОК10 У2,	
		<i>Y3 32, 33,</i>	
Тема 1.9 Электрические	Устный опрос	$\Pi K1.1, \Pi K2.1, \Pi K2.2,$	
машины постоянного тока.	Практическая работа №16	ПК2.3	
	Практическая работа №17	OK01, OK07, OK09,	
	Контрольная работа	OK10	
		<i>Y1, Y2, Y3</i>	
		31, 32, 33, 34	

	Устный опрос Контрольная работа	ПК1.1, ПК2.1 ОК01, ОК07 У1 31, 32	
	Устный опрос Контрольная работа	ПК2.1 ОК01, ОК07 УЗ 33, 34	
Раздел 2. Электроника.			
Тема 2.1. Физические основы электроники.	Устный опрос Контрольная работа	ПК1.1, ПК2.1, ПК2.2, ОК01, ОК07, ОК09, ОК10 У1, У2 31, 32, 33	

Тема 2.2. Полупроводниковые приборы.	Устный опрос Практическая работа №18 Контрольная работа	ПК1.1, ПК2.1, ПК2.2, ПК2.3 ОК09, ОК10 У1, У2 31, 32, 33	
Тема 2.3. Интегральные схемы микроэлектроники.	Устный опрос Контрольная работа	ПК1.1, ПК2.1, ПК2.2, ПК2.3 ОК07, ОК09, ОК10 У1, У2 31, 32	
Тема 2.4. Электронные выпрямители и стабилизаторы.	Устный опрос Практическая работа №19 Контрольная работа	ПК1.1, ПК2.1, ПК2.2, ОК01, ОК07, ОК09, У1, У2, У3 31, 32, 33, 34	
Тема 2.5. Электронные усилители.	Устный опрос Практическая работа №20 Контрольная работа	ПК1.1, ПК2.1, ПК2.2, ОК01, ОК07, ОК09 У1, У2, У3 31, 32, 33, 34	

Тема 2.6. Электронные генераторы и измерительные приборы.	Устный опрос Контрольная работа	ПК2.2, ПК2.3 ОК01, ОК07 У1, У2 31, 32	
Тема 2.7. Электронные устройства автоматики и вычислительной техники.	Устный опрос Контрольная работа	ПК1.1, ПК2.1, ПК2.2, ОК01, ОК07, ОК09 У1, У2, У3 31, 32, 34	
Промежуточная аттестация			ПК1.1, ПК2.1, ПК2.2, ПК2.3 ОК01, ОК07, ОК09, ОК10 У1, У2, У3 31, 32, 33, 34

2. Задания для оценки освоения учебной дисциплины

2.1 Задания для текущего контроля

Тема 1.1 Электрическое поле

- 1. Что такое электрическое поле?
- 2. Как определяется напряженность электрического поля?
- 3. В каких единицах измеряется напряженность электрического поля?
- 4. Какова связь между потенциалом и напряженностью электрического поля?
- 5. Что означает принцип суперпозиции для электрических полей?
- 6. Какие виды электрических полей существуют?
- 7. Какое распределение зарядов создает однородное электрическое поле?
- 8. Что происходит с заряженной частицей при попадании в электрическое поле?
- 9. Как влияет диэлектрическая проницаемость среды на электрическое поле внутри нее?
- 10. Как вычисляется работа перемещения заряда в электрическом поле?

Тема 1.2. Электрические цепи постоянного тока.

Вопросы для контрольной работы:

- 1. Что такое электрический ток и как он возникает в проводнике?
- 2. Какие основные законы используются для анализа цепей постоянного тока?
- 3. Что представляет собой закон Ома для полной цепи?
- 4. Каково правило Кирхгофа для контурных токов?
- 5. Что означает эквивалентное сопротивление последовательно соединенных резисторов?
- 6. Как определить общее напряжение на параллельно соединённых элементах цепи?
- 7. Что называется мощностью электрической цепи и как она рассчитывается?
- 8. В чём заключается разница между последовательным и параллельным соединением элементов в цепи?
- 9. Каковы особенности работы источника ЭДС в цепи постоянного тока?
- 10. Как изменяется сила тока в цепи при изменении сопротивления нагрузки?

Практическая работа №1 Опытное подтверждение закона Ома.

Практическая работа №2 Измерение электрического сопротивления. Измерение и расчёт мощности электрического тока.

Практическая работа №3 Изучение смешанного соединения резисторов. Применение законов Кирхгофа.

Практическая работа №4 Применение законов Кирхгофа в расчётах электрических цепей.

Тема 1.3. Электромагнетизм.

Вопросы для контрольной работы:

- 1. Что такое магнитное поле и как оно связано с электрическим полем?
- 2. Какой закон описывает взаимодействие движущихся зарядов с магнитным полем?
- 3. Что представляет собой явление электромагнитной индукции?
- 4. Как формулируется закон Фарадея для электромагнитной индукции?
- 5. Что называют индуктивностью контура и как она связана с изменением магнитного потока?
- 6. Какое воздействие оказывает переменное магнитное поле на проводник?
- 7. В чём заключается отличие между постоянным и переменным магнитным потоком?
- 8. Какую роль играет самоиндукция в электрических цепях?
- 9. Что представляют собой магнитные линии и как они связаны с магнитной силой?
- 10. Как магнитное поле влияет на движение заряженных частиц?

Практическая работа №5 Исследование явления электромагнитной индукции

Тема 1.4. Электрические цепи однофазного переменного тока.

- 1. Что такое переменный ток и как он отличается от постоянного тока?
- 2. Какие параметры характеризуют синусоидальный переменный ток?
- 3. Что означают понятия амплитуда, частота и фаза в контексте переменного тока?
- 4. Как рассчитываются действующие значения напряжения и тока в цепи переменного тока?
- 5. Что представляет собой импеданс в цепи переменного тока и как его рассчитать?
- 6. Какое влияние оказывают реактивные элементы (индуктивность и емкость) на работу цепи переменного тока?

- 7. Что значит резонанс в цепи переменного тока и какие типы резонанса бывают?
- 8. Каково соотношение между активной, реактивной и полной мощностями в цепи переменного тока?
- 9. Что показывает коэффициент мощности и почему важно стремиться к его увеличению?
- 10. Как работает трансформатор в цепи переменного тока и зачем он используется?

Практическая работа №6 Исследование последовательного и параллельного соединения конденсаторов катушек индуктивности.

Практическая работа №7 Исследование неразветвленной цепи переменного тока. Резонанс напряжений.

Практическая работа №8 Исследование разветвленной цепи переменного тока. Резонанс токов.

Тема 1.5. Электрические цепи трёхфазного переменного тока.

Вопросы для контрольной работы:

- 1. Что такое трехфазная система переменного тока и в чем ее преимущества перед однофазной системой?
- 2. Какие существуют способы соединения обмоток генератора в трехфазной системе (звезда и треугольник)?
- 3. Как соотносятся линейные и фазные напряжения и токи в трехфазных системах?
- 4. Что представляет собой нейтральный провод в трехфазной сети и когда он необходим?
- 5. Как распределяются нагрузки в симметричной трехфазной системе?
- 6. Что происходит при несимметричном распределении нагрузок в трехфазной сети?
- 7. Как рассчитывается мощность в трехфазных цепях?
- 8. Почему трехфазные системы предпочтительны для передачи электроэнергии на большие расстояния?
- 9. Как работают асинхронные двигатели в трехфазной сети и как они подключаются?
- 10. Какие меры безопасности применяются в трехфазных сетях и почему они важны?

Практическая работа №9 Исследование соединений «звезда» и «треугольник в трёхфазных цепях переменного тока.

Практическая работа №10 Определение активной, реактивной и полной мощности.

Тема 1.6. Электрические измерения и электроизмерительные приборы.

Вопросы для контрольной работы:

- 1. Какие основные величины измеряются в электрических цепях?
- 2. Какие типы электроизмерительных приборов вы знаете и в чем их различие?
- 3. Что такое амперметр и как он подключается в цепь?
- 4. Что представляет собой вольтметр и каким образом он включается в схему?
- 5. Для чего нужен омметр и какими методами можно измерять сопротивление?
- 6. Как работает мультиметр и какие функции он выполняет?
- 7. Что такое осциллограф и каково его назначение в электрических измерениях?
- 8. Какие погрешности могут возникать при проведении электрических измерений и как их минимизировать?
- 9. Как правильно выбрать диапазон измерений на приборе для получения точных результатов?
- 10. Какие современные технологии используются в цифровых электроизмерительных приборах и как они улучшают точность измерений?

Практическая работа №11 Измерение электрических величин: тока, напряжения, сопротивления, мощности.

Практическая работа №12 Расчёт погрешностей измерительных приборов.

Тема 1.7. Трансформаторы.

- 1. Что такое трансформатор и для чего он используется?
- 2. Как устроен трансформатор? Опишите основные компоненты.
- 3. Какие типы трансформаторов вы знаете и в чем их различия?
- 4. Как работает трансформатор на основе принципа электромагнитной индукции?

- 5. Что означает коэффициент трансформации и как он рассчитывается?
- 6. Какие потери энергии происходят в трансформаторе и как их уменьшить?
- 7. Что представляет собой холостой ход трансформатора и каковы его характеристики?
- 8. Как выбирается номинальная мощность трансформатора для конкретной задачи?
- 9. Какие меры безопасности следует соблюдать при работе с трансформаторами?
- 10. Как производится обслуживание и диагностика состояния трансформатора?

Практическая работа №13 Исследование работы однофазного трансформатора.

Практическая работа №14 Определение коэффициента трансформации.

Тема 1.8. Электрические машины переменного тока.

Вопросы для контрольной работы:

- 1. Что такое электрические машины переменного тока и какие основные типы таких машин вы знаете?
- 2. Как устроены синхронные генераторы и как они работают?
- 3. Чем отличаются асинхронные двигатели от синхронных двигателей?
- 4. Как работает асинхронный двигатель и какие факторы определяют его скорость вращения?
- 5. Что представляет собой пусковой момент асинхронного двигателя и как его увеличить?
- 6. Какие режимы работы возможны у синхронного генератора и как они реализуются?
- 7. Как регулируется скорость вращения асинхронного двигателя?
- 8. Какие проблемы могут возникнуть при эксплуатации электрических машин переменного тока?
- 9. Как осуществляется защита электрических машин от перегрузок и коротких замыканий?
- 10. Какие перспективы развития электрических машин переменного тока вы видите в будущем?

Практическая работа №15 Пуск в ход и снятие рабочих характеристик трёхфазного асинхронного двигателя.

Тема 1.9 Электрические машины постоянного тока.

Вопросы для контрольной работы:

- 1. Что такое электрические машины постоянного тока и какие основные типы таких машин вы знаете?
- 2. Как устроены генераторы постоянного тока и как они работают?
- 3. Чем отличаются двигатели постоянного тока от двигателей переменного тока?
- 4. Как работает двигатель постоянного тока с независимым возбуждением и какие факторы определяют его скорость вращения?
- 5. Что представляет собой коммутация в коллекторных машинах постоянного тока?
- 6. Какие режимы работы возможны у генератора постоянного тока и как они реализуются?
- 7. Как регулируется скорость вращения двигателя постоянного тока?
- 8. Какие проблемы могут возникнуть при эксплуатации электрических машин постоянного тока?
- 9. Как осуществляется защита электрических машин от перегрузок и коротких замыканий?
- 10. Какие перспективы развития электрических машин постоянного тока вы видите в будущем?

Практическая работа №16 Испытание двигателя постоянного тока.

Практическая работа №17 Исследование работы генератора постоянного тока.

Тема 1.10. Основы электропривода.

Вопросы для контрольной работы:

- 1. Что такое электропривод и какие его основные компоненты?
- 2. Какие типы электродвигателей наиболее часто используются в электроприводе?
- 3. Как выбирается электродвигатель для конкретного применения?
- 4. Что представляет собой система управления электроприводом и какие функции она выполняет?
- 5. Как регулируются скорость и момент в электроприводах?
- 6. Какие режимы работы возможны у электроприводов и как они реализуются?
- 7. Какие проблемы могут возникнуть при эксплуатации электропривода?
- 8. Как осуществляется защита электроприводов от перегрузок и коротких замыканий?
- 9. Какие перспективы развития электроприводы вы видите в будущем?
- 10. Каким образом обеспечивается энергоэффективность в современных электроприводах?

Тема 1.11. Передача и распределение электрической энергии.

- 1. Что включает в себя система передачи и распределения электрической энергии?
- 2. Какие основные элементы входят в состав линий электропередачи?
- 3. Почему передача электроэнергии обычно осуществляется на высоких напряжениях?
- 4. Какие потери возникают при передаче электроэнергии и как их минимизировать?
- 5. Что такое подстанции и какую роль они играют в системе электроснабжения?
- 6. Какие схемы распределения электроэнергии используются в городских и сельских районах?
- 7. Как осуществляется защита линий электропередач от перенапряжений и коротких замыканий?
- 8. Какие экологические аспекты учитываются при строительстве новых линий электропередач?
- 9. Какие перспективы развития систем передачи и распределения электроэнергии вы видите в будущем?
- 10. Каким образом обеспечивается надежность и устойчивость работы энергосистем?

Тема 2.1. Физические основы электроники.

Вопросы для контрольной работы:

- 1. Что такое электронная эмиссия и какие ее виды вы знаете?
- 2. Как устроена структура полупроводника и какие типы полупроводников существуют?
- 3. Что представляет собой p-n переход и как он работает?
- 4. Какие физические процессы лежат в основе работы транзистора?
- 5. Как работают диоды и какие их основные типы вы знаете?
- 6. Что такое туннельный эффект и где он применяется в электронике?
- 7. Какие свойства имеют сверхпроводники и как они используются в современной технике?
- 8. Каковы основные принципы квантовых компьютеров и в чем их преимущество перед классическими компьютерами?
- 9. Какие перспективы развития нанотехнологий в электронике вы видите в будущем?
- 10. Как осуществляется управление свойствами материалов на уровне атомов и молекул в современной электронике?

Тема 2.2. Полупроводниковые приборы.

- 1. Что такое полупроводниковый диод и как он работает?
- 2. Какие основные типы полупроводниковых диодов вы знаете и в чем их отличия?
- 3. Что представляет собой транзистор и какие его основные типы вы знаете?
- 4. Как работает биполярный транзистор в режиме усиления сигнала?
- 5. Что такое полевой транзистор (MOSFET) и каковы его основные характеристики?
- 6. Какие устройства называются тиристорами и где они применяются?
- 7. Как работают светодиоды и фотодиоды, и в чем заключаются их основные применения?
- 8. Какие перспективы развития полупроводниковых технологий вы видите в будущем?
- 9. Как осуществляется управление параметрами полупроводниковых приборов в современных интегральных схемах?
- 10. Какие проблемы могут возникнуть при эксплуатации полупроводниковых устройств и как их избежать?

Практическая работа №18 Исследование двухполупериодного выпрямителя.

Тема 2.3. Интегральные схемы микроэлектроники.

Вопросы для контрольной работы:

- 1. Что такое интегральная схема и какие ее основные типы вы знаете?
- 2. Как устроена структура интегральной схемы и какие материалы используются для ее создания?
- 3. Какие этапы производства интегральных схем вы можете назвать?
- 4. Что представляет собой микропроцессор и каковы его основные функции?
- 5. Какие преимущества имеют цифровые интегральные схемы перед аналоговыми?
- 6. Как осуществляется тестирование и проверка качества интегральных схем?
- 7. Какие перспективы развития интегральных схем и микроэлектроники вы видите в будущем?
- 8. Каковы основные ограничения современных интегральных схем, и как они преодолеваются?
- 9. Какие проблемы могут возникнуть при проектировании и производстве интегральных схем высокого уровня интеграции?
- 10. Как интегрированные схемы используются в современных устройствах и системах?

Тема 2.4. Электронные выпрямители и стабилизаторы.

- 1. Что такое электронный выпрямитель и какие его основные типы вы знаете?
- 2. Как работает однополупериодный выпрямитель, и какие у него недостатки?
- 3. Что представляет собой двухполупериодный мостовой выпрямитель?
- 4. Как осуществляется фильтрация пульсаций после выпрямления?
- 5. Что такое стабилизатор напряжения и какие его типы вы можете назвать?
- 6. Как работают линейные стабилизаторы напряжения и их основные характеристики?
- 7. Что представляют собой импульсные стабилизаторы и в чем их преимущества перед линейными?

- 8. Какие проблемы могут возникнуть при проектировании и использовании электронных выпрямителей и стабилизаторов?
- 9. Каковы перспективы развития электронных выпрямителей и стабилизаторов в будущем?
- 10. Как электронные выпрямители и стабилизаторы используются в современных устройствах и системах?

Практическая работа №19 Расчёт параметров и составление схем различных типов выпрямителей

Тема 2.5. Электронные усилители.

Вопросы для контрольной работы:

- 1. Что такое электронный усилитель и какие его основные типы вы знаете?
- 2. Как работает операционный усилитель (ОУ), и какие у него основные характеристики?
- 3. Что представляет собой каскад усиления на биполярном транзисторе и как он функционирует?
- 4. Как осуществляется обратная связь в электронных усилителях и какие ее виды вы можете назвать?
- 5. Что такое коэффициент усиления и как его можно регулировать?
- 6. Какие проблемы могут возникнуть при проектировании и использовании электронных усилителей?
- 7. Каковы перспективы развития электронных усилителей в будущем?
- 8. Как электронные усилители используются в современных устройствах и системах?
- 9. Какие методы повышения стабильности работы усилителя вы знаете?
- 10. Какими способами можно улучшить частотные характеристики электронного усилителя?

Практическая работа №20 Определение рабочей точки на линии нагрузки и построение графиков напряжения и тока в цепи нагрузки усилительного каскада.

Тема 2.6. Электронные генераторы и измерительные приборы.

Вопросы для контрольной работы:

- 1. Что такое электронный генератор и какие его основные типы вы знаете?
- 2. Как работает генератор гармонических колебаний (синусоидальных сигналов) и какие у него основные характеристики?
- 3. Что представляет собой мультивибратор и как он функционирует?
- 4. Как осуществляется стабилизация частоты в электронных генераторах?
- 5. Что такое цифровой осциллограф и каковы его основные функции?
- 6. Какие проблемы могут возникнуть при проектировании и использовании электронных генераторов?
- 7. Каковы перспективы развития электронных генераторов и измерительных приборов в будущем?
- 8. Как электронные генераторы используются в современных устройствах и системах?
- 9. Какие методы калибровки и настройки электронных измерительных приборов вы знаете?
- 10. Какими способами можно повысить точность измерений в электронных приборах?

Тема 2.7. Электронные устройства автоматики и вычислительной техники.

- 1. Что такое система автоматического управления и какие ее основные компоненты вы знаете?
- 2. Как работает микроконтроллер и какие его основные функции?
- 3. Что представляет собой программируемый логический контроллер (PLC) и где он применяется?
- 4. Как осуществляется обработка данных в цифровых вычислительных системах?
- 5. Что такое аналого-цифровой преобразователь (АЦП) и цифроаналоговый преобразователь (ЦАП), и как они функционируют?
- 6. Какие проблемы могут возникнуть при проектировании и использовании электронных устройств автоматики?
- 7. Каковы перспективы развития электронных устройств автоматики и вычислительной техники в будущем?
- 8. Как электронные устройства автоматики используются в современных промышленных системах?
- 9. Какие методы оптимизации работы электронных устройств вы знаете?

10. Какими способами можно повысить надежность и безопасность электронных устройств?

Критерии оценки выполнения и защиты практических работ:

- оценка «отлично» выставляется, если задание выполнено, верно, оформлен отчет о работе и студент правильно отвечает на контрольные вопросы;
- оценка «хорошо» выставляется, если при выполнении заданий незначительные ошибки, оформлен отчет о работе и при ответе на контрольные вопросы допущены небольшие неточности;
- оценка «удовлетворительно» выставляется, если при выполнении заданий допущены ошибки, оформлен отчет о работе и при ответе на контрольные вопросы допущены неточности;
- оценка «неудовлетворительно» выставляется, если задание выполнено, не верно, не оформлен отчет о работе и студент неправильно отвечает на контрольные вопросы.
 - 3.1 Задания для промежуточной аттестации
 - 1. Электрическое поле.
 - 2. Активная, реактивная и полная мощности переменного тока.
 - 3. Найти эквивалентное сопротивление цепи $R_{^{3}_{KB}}$ при: $R_1 = 10$ Ом, $R_2 = 15$ Ом, $R_3 = 5$ Ом, $R_5 = 20$ Ом.
 - 4. Строение атома, взаимодействие зарядов.
 - 5. Мгновенное, действующее и максимальное значение переменного тока.
- 6. Найти эквивалентное сопротивление цепи $R_{^{9}_{KB}}$ при: R_1 = 5 Ом, R_2 = 10 Ом, R_3 = 15 Ом, R_5 = 25 Ом.
 - 7. Потенциал и напряжение электрического поля.
 - 8. Основные понятия магнетизма. Магнитные материалы.
- 9. Найти эквивалентное сопротивление цепи $R_{^{9}K^{B}}$ при: R_{1} = 15 Ом, R_{2} = 20 Ом, R_{3} = 30 Ом, R_{5} = 10 Ом.
 - 10. Напряженность электрического поля.
 - 11. Расчёт сложной электрической цепи с использованием законов Кирхгофа.
- 12. Найти эквивалентное сопротивление цепи $R_{^{3}K^{B}}$ при: $R_{1} = 5$ Ом, $R_{2} = 25$ Ом, $R_{3} = 40$ Ом, $R_{5} = 10$ Ом, $R_{5} = 15$ Ом.
 - 13. Электрический ток, основные понятия.
 - 14. Понятия «ветвь», «узел» и «контур» в электрической цепи.
- 15. Найти эквивалентное сопротивление цепи $R_{_{9KB}}$ при: R_1 = 30 Om, R_2 = 50 Om, R_3 = 10 Om, R_5 = 15 Om.
 - 16. Проводники и диэлектрики.

- 17. Торможение двигателей постоянного тока.
- 18. Найти эквивалентное сопротивление цепи R_{3KB} при: R_1 = 25 Ом, R_2 = 60 Ом, R_3 = 100 Ом, R_4 = 70 Ом, R_5 = 30 Ом.
 - 19. Электрическая ёмкость. Конденсаторы.
 - 20. Механическая характеристика двигателя постоянного тока.
- 21. Найти эквивалентное сопротивление цепи R_{3KB} при: R_1 = 50 Ом, R_2 = 45 Ом, R_3 = 35 Ом, R_4 = 75 Ом, R_5 = 15 Ом.
 - 22. Последовательное, параллельное и смешанное соединение конденсаторов.
 - 23. Пуск в ход двигателей постоянного тока.
- 24. Найти эквивалентное сопротивление цепи R^n при: $R_1 = 40$ Ом, $R_2 = 20$ Ом, $R_3 = 60$ Ом, $R_4 = 55$ Ом, $R_5 = 25$ Ом.
 - 25. Источники и приёмники электрической энергии.
 - 26. Регулирование скорости вращения двигателя постоянного тока.
- 27. Найти эквивалентную ёмкость $C_{_{\text{ЭКВ}}}$ смешанного соединения конденсаторов:
- $C_1 = 40$ мк Φ , $C_2 = 20$ мк Φ , $C_3 = 60$ мк Φ , $C_4 = 55$ мк Φ , $C_5 = 25$ мк Φ .
 - 28. Электрическое сопротивление.
 - 29. Двигатели постоянного тока.
 - 30. Найти эквивалентную ёмкость Сэкв смешанного соединения конденсаторов:
- $C_1 = 100$ мкФ, $C_2 = 200$ мкФ, $C_3 = 300$ мкФ, $C_4 = 550$ мкФ, $C_5 = 250$ мкФ.
 - 31. Закон Ома определение, формула, единицы измерения.
 - 32. Способы возбуждения генераторов постоянного тока.
- $C_1 = 250$ мк Φ , $C_2 = 400$ мк Φ , $C_3 = 100$ мк Φ , $C_4 = 150$ мк Φ , $C_5 = 100$ мк Φ .
 - 34. Последовательное, параллельное и смешанное соединение резисторов.
 - 35. Принцип работы генератора постоянного тока.
- 36. Найти эквивалентную ёмкость Сэкв смешанного соединения конденсаторов:
- $C_1 = 50$ мкФ, $C_2 = 150$ мкФ, $C_3 = 120$ мкФ, $C_4 = 170$ мкФ, $C_5 = 100$ мкФ.
 - 37. Законы Кирхгофа в электрической цепи.
 - 38. Принцип действия и устройство генератора постоянного тока.
 - 39. Найти эквивалентную ёмкость Сэкв смешанного соединения конденсаторов:
- $C_1 = 60$ мкФ, $C_2 = 120$ мкФ, $C_3 = 200$ мкФ, $C_4 = 150$ мкФ, $C_5 = 300$ мкФ.
 - 40. Работа и мощность электрического тока.
 - 41. Основные понятия и область применения машин постоянного тока.
 - 42. Найти эквивалентную ёмкость Сэкв смешанного соединения конденсаторов:
- $C_1 = 100$ мкФ, $C_2 = 200$ мкФ, $C_3 = 500$ мкФ, $C_4 = 100$ мкФ, $C_5 = 300$ мкФ.
 - 43. Основные понятия о магнетизме и магнитном поле.
 - 44. Регулирование частоты вращения асинхронного двигателя.
 - 45. Найти эквивалентную ёмкость $C_{_{9KB}}$ смешанного соединения конденсаторов:
- $C_1 = 20$ мкФ, $C_2 = 15$ мкФ, $C_3 = 30$ мкФ, $C_4 = 50$ мкФ, $C_5 = 10$ мкФ.
 - 46. Характеристики магнитного поля.
 - 47. Тормозные режимы асинхронных двигателей.

- 48. Найти эквивалентную ёмкость $C_{_{9KB}}$ смешанного соединения конденсаторов: $C_1 = 60$ мк Φ , $C_2 = 55$ мк Φ , $C_3 = 70$ мк Φ , $C_4 = 50$ мк Φ , $C_5 = 20$ мк Φ .
 - 49. Проводник с током в магнитном поле.
 - 50. Пуск асинхронных двигателей.
 - 51. Составить уравнения по законам Кирхгофа для сложной электрической цепи при: $E_1 = 10$ B, $E_2 = 15$ B, $R_2 = 10$ OM, $R_2 = 15$ OM, $R_3 = 5$ OM, $R_4 = 10$ OM.
 - 52. Закон электромагнитной индукции.
 - 53. Механическая характеристика асинхронного двигателя.
 - 54. Составить уравнения по законам Кирхгофа для сложной электрической цепи при: E_1 = 20 B, E_2 = 25 B, A_1 = 15 Om, A_2 = 20 Om, A_3 = 5 Om, A_4 = 40 Om.
 - 55. Индуктивность. Явление самоиндукции.
 - 56. Принцип действия и режимы работы асинхронного двигателя.
 - 57. Составить уравнения по законам Кирхгофа для сложной электрической цепи при: $E_1 = 15$ B, $E_2 = 30$ B, $A_1 = 45$ OM, $A_2 = 30$ OM, $A_3 = 25$ OM, $A_4 = 45$ OM.
 - 58. Явление взаимоиндукции в цепях переменного тока.
 - 59. Устройство асинхронного двигателя.
 - 60.Составить уравнения по законам Кирхгофа для сложной электрической цепи при: $E_1 = 20 \text{ B}$, $E_2 = 50 \text{ B}$, $R_1 = 25 \text{ Om}$, $R_2 = 70 \text{ Om}$, $R_3 = 20 \text{ Om}$, $R_4 = 55 \text{ Om}$.
 - 61. Переменный ток. Основные параметры.
 - 62. Асинхронные машины. Основные понятия.
 - 63. Составить уравнения по законам Кирхгофа для сложной электрической цепи при: $E_1 = 10$ B, $E_2 = 5$ B, $A_1 = 20$ OM, $A_2 = 35$ OM, $A_3 = 40$ OM, $A_4 = 30$ OM.
 - 64. Векторное изображение электрических величин в цепях переменного тока.
 - 65. Классификация и принцип действия электрических машин.
 - 66. Составить уравнения по законам Кирхгофа для сложной электрической цепи при: $E_1 = 100 \text{ B}$, $E_2 = 75 \text{ B}$, $R_1 = 50 \text{ Om}$, $R_2 = 85 \text{ Om}$, $R_3 = 95 \text{ Om}$, $R_4 = 100 \text{ Om}$.
 - 67. Электрическая цепь переменного тока с резистивным элементом.
 - 68. Режимы работы трансформатора.
 - 69. Составить уравнения по законам Кирхгофа для сложной электрической цепи при: $E_1 = 50$ B, $E_2 = 45$ B, $H_3 = 65$ OM, $H_4 = 70$ OM.
 - 70. Электрическая цепь переменного тока с индуктивным элементом.
 - 71. Устройство трансформатора.
 - 1. .В электрическую цепь с напряжением и = 50 В последовательно включены активное R = 50 Ом, индуктивное $X_L = 15$ Ом и ёмкостное $X_c = 20$ Ом сопротивления. Определить полное сопротивление Z, ток в цепи I, коэффициент мощности $\cos \varphi$, угол cдвига φ аз φ , полную S, активную P и реактивную Q мощности.
 - 73. Электрическая цепь переменного тока с ёмкостным элементом.
 - 74. Устройство цифрового мультиметра.
 - 75. В электрическую цепь с напряжением и = 100 В последовательно включены активное

- R = 70 Ом, индуктивное $X_L = 30$ Ом и ёмкостное $X_c = 15$ Ом сопротивления. Определить полное сопротивление Z, ток в цепи I, коэффициент мощности \cos ф, угол сдвига фаз ф, полную S, активную P и реактивную Q мощности.
 - 76.Цепь переменного тока с активным, индуктивным и емкостным сопротивлениями.
 - 77. Практическое задание: измерение напряжения в цепи с помощью мультиметра.
 - 78. В электрическую цепь с напряжением и = 50 В последовательно включены активное
- R = 10 Ом, индуктивное $X_L = 5$ Ом и ёмкостное $X_c = 10$ Ом сопротивления. Определить полное сопротивление Z, ток в цепи I, коэффициент мощности \cos ф, угол сдвига фаз ф, полную S, активную P и реактивную Q мощности.
 - 79. Мощность трёхфазной электрической цепи.
 - 80.Практическое задание: измерение сопротивления в цепи с помощью мультиметра.
 - 81. В электрическую цепь с напряжением и = 80 В последовательно включены активное
- R = 50 Ом, индуктивное $X_L = 15$ Ом и ёмкостное $X_c = 15$ Ом сопротивления. Определить полное сопротивление Z, ток в цепи I, коэффициент мощности соѕф, угол сдвига фаз ф, полную S, активную P и реактивную Q мощности.
 - 82. Мощность в цепях переменного тока.
 - 83. Принцип действия трансформатора.
 - 84.В электрическую цепь с напряжением и = 200 В последовательно включены активное
- R = 100 Ом, индуктивное $X_L = 50$ Ом и ёмкостное $X_c = 40$ Ом сопротивления. Определить полное сопротивление Z, ток в цепи I, коэффициент мощности соѕф, угол сдвига фаз ф, полную S, активную P и реактивную Q мощности.
 - 85. Основные понятия о трёхфазной цепи переменного тока.
 - 86. Назначение цифрового мультиметра. Правила использования мультиметра.
 - 87. В электрическую цепь с напряжением и = 55 В последовательно включены активное
- $R=45~{\rm Om},$ индуктивное $X_L=20~{\rm Om}$ и ёмкостное $X_c=35~{\rm Om}$ сопротивления. Определить полное сопротивление Z, ток в цепи I, коэффициент мощности \cos ф, угол сдвига фаз ф, полную S, активную P и реактивную P мощности.
 - 88.Схемы соединения генератора и приёмника электрической энергии в трёхфазной цепи.
 - 89. Практическое задание: измерение тока в цепи с помощью мультиметра.
 - 90. В электрическую цепь с напряжением и = 55 В последовательно включены активное

 $R=60~{\rm Om}$, индуктивное $X_L=25~{\rm Om}$ и ёмкостное $X_c=40~{\rm Om}$ сопротивления. Определить полное сопротивление Z, ток в цепи I, коэффициент мощности \cos ф, угол сдвига фаз ф, полную S, активную P и реактивную Q мощности.

4. Условия проведения промежуточной аттестации

Количество вариантов заданий для аттестующихся - 30

Максимальное время выполнения задания - 35 мин. (теоретическое задание - 15 мин; практическое задание -20 мин.)

Экзамен проводится в устной форме, состоит из ответов обучающихся на вопросы и решение задачи.

Структура экзаменационных билетов:

- первый и второй вопросы теоретические, направленные на проверку знаний по дисциплине;
 - третий вопрос практический (решение задачи).

Задания экзамена направлены на проверку умений и навыков, полученных обучающимся при изучении дисциплины. Билеты экзамена равноценны по трудности, одинаковы по структуре.

Оборудование: <u>цифровой мультиметр, комплект резисторов различного</u> номинала, источники питания различного номинала, графические материалы по электротехнике.

5. Критерии оценивания для промежуточной аттестации

Уровень	Показатели оценки результатов	
учебных		
достижений		
«5»	Студент глубоко и прочно усвоил программный материал,	
	исчерпывающе, грамотно и логически стройно его излагает,	
	тесно увязывает теорию с практикой. При этом студент не	
	затрудняется с ответом при видоизменении задания, свободно	
	справляется с заданиями, вопросами и другими видами	
	контроля знаний, правильно обосновывает принятые	
	решения, владеет разносторонними навыками и приемами	
	выполнения практических заданий.	
«4»	Студент твердо знает программный материал, грамотно и по	
	существу излагает его, не допускает существенных	
	неточностей в ответе на вопрос, правильно применяет	
	теоретические положения при решении практических	

	вопросов и заданий, владеет необходимыми приемами их
	выполнения.
«3»	Студент имеет знания только основного материала, но не
	усвоил его детали, допускает неточности, недостаточно
	правильные формулировки, нарушения последовательности в
	изложении программного материала и испытывает трудности
	в выполнении практических заданий.
«2»	Студент не усвоил значительной части программного
	материала, допускает существенные ошибки, неуверенно, с
	большим затруднением выполняет практические задания.

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ЛУГАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ ВЛАДИМИРА ДАЛЯ»

КОЛЛЕДЖ СЕВЕРОДОНЕЦКОГО ТЕХНОЛОГИЧЕСКОГО ИНСТИТУТА (филиал) ФГБОУ ВО «ЛГУ им. В. Даля»

РАССМОТРЕН И ПРИНЯТ

на заседании методической комиссии Колледжа Северодонецкого технологического института (филиал) ФГБОУ ВО «Луганского государственного университета имени Владимира Даля» Протокол от « 13 » сентября 2024 г. № 01

Председатель комиссии

УТВЕРЖДАЮ

Зам. директора Колледжа Северодонецкого технологического института (филиал) ФГБОУ ВО «Луганского государственного университета имени Владимира Даля»

Р.П. Филь«_13 » сентября_ 2024 г.

В.Н. Лескин

КОМПЛЕКТ ЗАДАНИЙ

для проведения промежуточной аттестации в форме экзамена

по учебной дисциплине

ОП.03 Электротехника и электроника

по специальности 23.02.07 Техническое обслуживание и ремонт двигателей, систем и агрегатов автомобилей форма обучения <u>очная</u>

Курс $\underline{2}$ Семестр $\underline{4}$

Учебная дисциплина <u>ОП.03 Электротехника и электроника</u> Специальность <u>23.02.07 Техническое обслуживание и ремонт двигателей, систем и агрегатов автомобилей</u> Курс II Форма обучения очная

БИЛЕТ № 1

- 1. Электрическое поле.
- 2. Активная, реактивная и полная мощности переменного тока.
- 3. Найти эквивалентное сопротивление цепи $R_{9_{KB}}$ при: R = 10 Ом, $R_2 = 15$ Ом, $R_3 = 5$ Ом, $R_5 = 20$ Ом.

Председатель методической комиссии		В.Н. Лескин
	(подпись)	_
Преподаватель		А.Н.Железняк
•	(подпись)	

КОЛЛЕДЖ СЕВЕРОДОНЕЦКОГО ТЕХНОЛОГИЧЕСКОГО ИНСТИТУТА (филиал) ФГБОУ ВО «ЛГУ им. В. Даля»

Учебная дисциплина <u>ОП.03 Электротехника и электроника</u> Специальность <u>23.02.07 Техническое обслуживание и ремонт двигателей, систем и агрегатов автомобилей</u>

Курс II Форма обучения <u>очная</u>

БИЛЕТ № 2

- 1. Строение атома, взаимодействие зарядов.
- 2. Мгновенное, действующее и максимальное значение переменного тока.
- 3. Найти эквивалентное сопротивление цепи $R_{^{9}_{KB}}$ при:

 $R = 5 \text{ Om}, R_2 = 10 \text{ Om}, R_3 = 15 \text{ Om}, R_5 = 15 \text{ Om}, R_5 = 25 \text{ Om}.$

Председатель методическ	кой комиссии	В.Н. Лескин
-	(подпись)	
Преподаватель	(подпись)	А.Н.Железняк

Учебная дисциплина <u>ОП.03 Электротехника и электроника</u> Специальность <u>23.02.07 Техническое обслуживание и ремонт двигателей,</u> систем и агрегатов автомобилей

Курс II Форма обучения <u>очная</u>

БИЛЕТ № 3

Потенциал и напряжение электрического поля.
 Основные понятия магнетизма. Магнитные материалы.
 Найти эквивалентное сопротивление цепи R_{экв} при: R = 15 Ом, R₂ = 20 Ом, R₃ = 30 Ом, R: = 15 Ом, R₅ = 10 Ом.
 Председатель методической комиссии _______ В.Н. Лескин
 Преподаватель ______ А.Н.Железняк

КОЛЛЕДЖ СЕВЕРОДОНЕЦКОГО ТЕХНОЛОГИЧЕСКОГО ИНСТИТУТА (филиал) ФГБОУ ВО «ЛГУ им. В. Даля»

Учебная дисциплина <u>ОП.03 Электротехника и электроника</u> Специальность <u>23.02.07 Техническое обслуживание и ремонт двигателей,</u> <u>систем и агрегатов автомобилей</u>

Курс II Форма обучения <u>очная</u>

БИЛЕТ № <u>4</u>

- 1. Напряженность электрического поля.
- 2. Расчёт сложной электрической цепи с использованием законов Кирхгофа.
- 3. Найти эквивалентное сопротивление цепи $R_{^{9}_{KB}}$ при:

 $R = 5 \text{ Om}, R_2 = 25 \text{ Om}, R_3 = 40 \text{ Om}, R_5 = 10 \text{ Om}, R_5 = 15 \text{ Om}.$

Председатель методической комиссии		В.Н. Лескин
1	(подпись)	
Преподаватель		А.Н.Железняк
•	(подпись)	

Учебная дисциплина <u>ОП.03 Электротехника и электроника</u> Специальность <u>23.02.07 Техническое обслуживание и ремонт двигателей,</u> систем и агрегатов автомобилей

Курс II Форма обучения <u>очная</u>

БИЛЕТ № 5

- 1. Электрический ток, основные понятия.
- 2. Понятия «ветвь», «узел» и «контур» в электрической цепи.
- 3. Найти эквивалентное сопротивление цепи $R_{^{9}_{KB}}$ при:

 $R = 30 \text{ Om}, R_2 = 50 \text{ Om}, R_3 = 10 \text{ Om}, R_5 = 25 \text{ Om}, R_5 = 15 \text{ Om}.$

Председатель методической комиссии	(подпись)	В.Н. Лескин
Преподаватель	(подпись)	А.Н.Железняк

КОЛЛЕДЖ СЕВЕРОДОНЕЦКОГО ТЕХНОЛОГИЧЕСКОГО ИНСТИТУТА (филиал) ФГБОУ ВО «ЛГУ им. В. Даля»

Учебная дисциплина <u>ОП.03 Электротехника и электроника</u> Специальность <u>23.02.07 Техническое обслуживание и ремонт двигателей, систем и агрегатов автомобилей</u>

Курс II Форма обучения <u>очная</u>

БИЛЕТ № <u>6</u>

- 1. Проводники и диэлектрики.
- 2. Торможение двигателей постоянного тока.
- 3. Найти эквивалентное сопротивление цепи $R_{^{9}KB}$ при: R=25 Ом, $R_2=60$ Ом, $R_3=100$ Ом, $R_5=70$ Ом, $R_5=30$ Ом.

Председатель методической комиссии		В.Н. Лескин
• • • • • • • • • • • • • • • • • • • •	(подпись)	
Преподаватель		А.Н.Железняк
•	(полимен)	

Учебная дисциплина <u>ОП.03 Электротехника и электроника</u> Специальность <u>23.02.07 Техническое обслуживание и ремонт двигателей,</u> систем и агрегатов автомобилей

Курс II Форма обучения <u>очная</u>

БИЛЕТ № 7

- 1. Электрическая ёмкость. Конденсаторы.
- 2. Механическая характеристика двигателя постоянного тока.
- 3. Найти эквивалентное сопротивление цепи $R_{^{9}_{KB}}$ при: $R_{1} = 50$ OM, $R_{2} = 45$ OM, $R_{3} = 35$ OM, $R_{4} = 75$ OM, $R_{5} = 15$ OM.

Председатель методической комиссии ______ В.Н. Лескин Преподаватель ______ А.Н.Железняк _____ (подпись)

КОЛЛЕДЖ СЕВЕРОДОНЕЦКОГО ТЕХНОЛОГИЧЕСКОГО ИНСТИТУТА (филиал) ФГБОУ ВО «ЛГУ им. В. Даля»

Учебная дисциплина <u>ОП.03 Электротехника и электроника</u> Специальность <u>23.02.07 Техническое обслуживание и ремонт двигателей,</u> <u>систем и агрегатов автомобилей</u>

Курс II Форма обучения <u>очная</u>

БИЛЕТ № 8

- 1. Последовательное, параллельное и смешанное соединение конденсаторов.
- 2. Пуск в ход двигателей постоянного тока.
- 3. Найти эквивалентное сопротивление цепи $Я_{_{9KB}}$ при:

 $R_1 = 40 \text{ OM}, R_2 = 20 \text{ OM}, R_3 = 60 \text{ OM}, R_3 = 55 \text{ OM}, R_4 = 25 \text{ OM}.$

Председатель методической комиссии	(подпись)	В.Н. Лескин
Преподаватель	(no manor)	А.Н.Железняк

Учебная дисциплина ОП.03 Электротехника и электроника

Специальность 23.02.07 Техническое обслуживание и ремонт двигателей, систем и агрегатов автомобилей

Курс II Форма обучения очная

БИЛЕТ № 9

- 1. Источники и приёмники электрической энергии.
- 2. Регулирование скорости вращения двигателя постоянного тока.
- 3. Найти эквивалентную ёмкость Сэкв смешанного соединения конденсаторов: $C_1 = 40 \text{ MK}\Phi$, $C_2 = 20 \text{ MK}\Phi$, $C_3 = 60 \text{ MK}\Phi$, $C_4 = 55 \text{ MK}\Phi$, $C_5 = 25 \text{ MK}\Phi$.

Председатель методической комиссии		_ В.Н. Лескин
•	(подпись)	
Преподаватель		_ А.Н.Железняк
	(полпись)	

КОЛЛЕДЖ СЕВЕРОДОНЕЦКОГО ТЕХНОЛОГИЧЕСКОГО ИНСТИТУТА (филиал) ФГБОУ ВО «ЛГУ им. В. Даля»

Учебная дисциплина ОП.03 Электротехника и электроника

Специальность 23.02.07 Техническое обслуживание и ремонт двигателей, систем и агрегатов автомобилей

Курс II Форма обучения очная

Преподаватель

БИЛЕТ № 10

1. Электрическое сопротивление. 2. Двигатели постоянного тока. 3. Найти эквивалентную ёмкость Сэкв смешанного соединения конденсаторов: $C_1 = 100$ мкФ, $C_2 = 200$ мкФ, $C_3 = 300$ мкФ, $C_4 = 550$ мкФ, $C_5 = 250$ мкФ. Председатель методической комиссии _____ В.Н. Лескин _____ А.Н.Железняк

Учебная дисциплина ОП.03 Электротехника и электроника

Специальность 23.02.07 Техническое обслуживание и ремонт двигателей, систем и агрегатов автомобилей

Курс II Форма обучения <u>очная</u>

БИЛЕТ № 11

- 1. Закон Ома определение, формула, единицы измерения.
- 2. Способы возбуждения генераторов постоянного тока.
- 3. Найти эквивалентную ёмкость C_{9KB} смешанного соединения конденсаторов: $C_1 = 250 \text{ мк}\Phi$, $C_2 = 400 \text{ мк}\Phi$, $C_3 = 100 \text{ мк}\Phi$, $C_4 = 150 \text{ мк}\Phi$, $C_5 = 100 \text{ мк}\Phi$.

Председатель методической комиссии		В.Н. Лескин
	(подпись)	
Преподаватель		А.Н.Железняк
	(подпись)	

КОЛЛЕДЖ СЕВЕРОДОНЕЦКОГО ТЕХНОЛОГИЧЕСКОГО ИНСТИТУТА (филиал) ФГБОУ ВО «ЛГУ им. В. Даля»

Учебная дисциплина ОП.03 Электротехника и электроника

Специальность 23.02.07 Техническое обслуживание и ремонт двигателей, систем и агрегатов автомобилей

Курс II Форма обучения <u>очная</u>

БИЛЕТ № 12

- 1. Последовательное, параллельное и смешанное соединение резисторов.
- 2. Принцип работы генератора постоянного тока.
- 3. Найти эквивалентную ёмкость $C_{9 \text{кв}}$ смешанного соединения конденсаторов: $C_1 = 50 \text{ мк}\Phi$, $C_2 = 150 \text{ мк}\Phi$, $C_3 = 120 \text{ мк}\Phi$, $C_4 = 170 \text{ мк}\Phi$, $C_5 = 100 \text{ мк}\Phi$.

Председатель методической комиссии		В.Н. Лескин
-	(подпись)	_
Преподаватель		А.Н.Железняк
1	(полпись)	