МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ЛУГАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ ВЛАДИМИРА ДАЛЯ»

КОЛЛЕДЖ СЕВЕРОДОНЕЦКОГО ТЕХНОЛОГИЧЕСКОГО ИНСТИТУТА (филиал) ФГБОУ ВО «ЛГУ им. В. Даля»

КОМПЛЕКТ КОНТРОЛЬНО-ОЦЕНОЧНЫХ СРЕДСТВ для проведения текущего контроля и промежуточной аттестации в форме дифференцированного зачета по учебной дисциплине

дисциплины ОП.02 Техническая механика

специальность 23.02.07 Техническое обслуживание и ремонт двигателей, систем и агрегатов автомобилей

РАССМОТРЕН И СОГЛАСОВАН методической комиссией Колледжа Северодонецкого технологического института (филиал) ФГБОУ ВО «ЛГУ им. В. Даля»

Протокол № <u>01</u> от «13» <u>сентября 2024 г.</u>

Председатель комиссии

В.Н. Лескин

Разработан на основе федерального государственного образовательного стандарта среднего профессионального образования по специальности 23.02.07 Техническое обслуживание и ремонт двигателей, систем и агрегатов автомобилей.

Ingligh

Memos

УТВЕРЖДЕН

заместителем директора

Р.П. Филь

Составитель(и):

Железняк Артём Николаевич, преподаватель СПО Колледжа Северодонецкого технологического института (филиал) ФГБОУ ВО «ЛГУ им. В. Даля».

1. Паспорт комплекта контрольно-оценочных средств

В результате освоения учебной дисциплины ОП.02 Техническая механика обучающийся должен обладать предусмотренными ФГОС СПО по специальности 23.02.07 Техническое обслуживание и ремонт двигателей, систем и агрегатов автомобилей:

- У 1 производить расчеты на прочность при растяжении и сжатии, срезе и смятии, кручении и изгибе;
- У 2 выбирать рациональные формы поперечных сечений;
- У 3 производить расчеты зубчатых и червячных передач, передачи «винтгайка», шпоночных соединений на контактную прочность;
- У 4 производить проектировочный и проверочный расчеты валов; производить подбор и расчет подшипников качения знаниями (3):
- 31- основные понятия и аксиомы теоретической механики;
- 32- условия равновесия системы сходящихся сил и системы произвольно расположенных сил;
- 33- методики решения задач по теоретической механике, сопротивлению материалов;
 - 34- методику проведения прочностных расчетов деталей машин; основы конструирования деталей и сборочных единиц;

и общими компетенциями:

- OК 1. Выбирать способы решения задач профессиональной деятельности применительно к различным контекстам,
- ОК 3 Планировать и реализовывать собственное профессиональное и личностное развитие,
- ОК 6 Проявлять гражданско-патриотическую позицию, демонстрировать осознанное поведение на основе традиционных общечеловеческих ценностей,
- ОК 9. Использовать информационные технологии в профессиональной деятельности.

2. Оценивание уровня освоения учебной дисциплины

Предметом оценивания служат умения и знания, предусмотренные ФГОС СПО по дисциплине ОП.02 Техническая механика, направленные на формирование общих и профессиональных компетенций. Промежуточная аттестация по учебной дисциплине проводится в форме экзамена.

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ
ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ
«ЛУГАНСКИЙ ГОСУДАРСТВЕННЫЙ
УНИВЕРСИТЕТ ИМЕНИ ВЛАДИМИРА ДАЛЯ»
КОЛЛЕДЖ СЕВЕРОДОНЕЦКОГО ТЕХНОЛОГИЧЕСКОГО ИНСТИТУТА

(филиал) ФГБОУ ВО «ЛГУ им. В. Даля»

РАССМОТРЕН И ПРИНЯТ

на заседании методической комиссии Колледжа Северодонецкого технологического института (филиал) ФГБОУ ВО «Луганского государственного университета имени Владимира Даля» Протокол от « 13 » сентября 2024 г. № _01 Председатель комиссии

УТВЕРЖДАЮ

Зам. директора Колледжа Северодонецкого технологического института (филиал) ФГБОУ ВО «Луганского государственного университета имени Владимира Даля»

Р.П. Филь

«_13 » сентября_ 2024 г.

В.Н. Лескин

КОМПЛЕКТ ЗАДАНИЙ

для проведения промежуточной аттестации в форме дифференцированного зачёта

по учебной дисциплине

ОП.01 Инженерная графика

по специальности 23.02.07 Техническое обслуживание и ремонт двигателей, систем и агрегатов автомобилей

форма обучения заочная

Курс 2 Семестр 4

Северодонецк

2023

Контроль и оценивание уровня освоения учебной дисциплины по темам (разделам)

Таблица 1

Элемент учебной	Формы и методы контроля			
дисциплины	Текущий контроль		Промежуточная аттестация	
	Форма контроля	Проверяемые ОК, У, 3	Форма контроля	Проверяемые ОК, У, 3
Раздел 1 . Теоретическая ме	еханика.			
Тема 1.1 Основные положения статики	Практическая работа l Самостоятельная работа	31 OK1. OK3, OK9		
Тема 1.2 Плоская система сходящихся сил	Практическая работа	31, 32,33 У1,У2, У4 ОК3. ОК6, ОК9		
Тема 1. 3 Теория пар сил на плоскости	Устный опоре	31, 32,33 OK1. OK3, OK9		
Тема 1.4 Плоская система произвольно расположенных сил	Практическая работа	31, 32,33 OK1. OK3, OK9		

Тема 1.5 Центр тяжести	Практическая работа	31, 32,33 OK1. OK3, OK9	
	Практическая работа	33 OK1. OK3, OK9	
Тема 1.6 Основные понятия кинематики. Кинематика точки			
Тема.1.7 Простейшие движения твердого тела	Устный опрос	33 OK1. OK3, OK9 OK1. OK3, OK9	
Тема 1.8 Сложное движение твердого тела	Устный опрос	33 OK1. OK3, OK9	
Тема 1.9 Основные понятия динамики. Движение материальной точки. Метод кинетостатики	Практическая работа	33 OK1. OK3, OK9	
Тема 1.10 Трение. Работа и мощность	Устный опрос	33 OK1. OK3, OK9	

Раздел 2 Сопротивление м	иатериалов		
Т ема 2.1. Растяжение и сжатие	Практическая работа	32,43 У1,У2, У4, ОК3. ОК6, ОК9	
Тема 2.2 Расчеты на срез и смятие	Практическая работа	32,43	
Тема 2.3 Геометрические характеристики плоских сечений	Устный опрос	32,43	
Тема. 2.4 Кручение	Практическая работа	32,43 У1,У2, У4, ОК3. ОК6, ОК9	
Тема 2.5 Изгиб	Практическая работа	32,43 У1,У2, У4, ОК3. ОК6, ОК9	
Тема 2.6 Устойчивость сжатых стержней.	Практическая работа	32,43 У1,У2, У4, ОК3. ОК6, ОК9	
Раздел 3 Детали машин			
Тема 3.1. Общие сведения о передачах	Практическая работа	32,43 У1,У2, У4, ОК3. ОК6,	

		ОК9		
Тема 3.2 .Валы и оси. Подшипники. Общие сведения о редукторах. Муфты	Практическая работа Самостоятельная работа	32,43 У1,У2, У4, ОК3. ОК6, ОК9		
Тема 3.3 Соединения деталей машин	Устный опрос	32,43 У1,У2, У4, ОК3. ОК6, ОК9		
Промежуточная аттестация			Экзамен	32,43 У1,У2, У4, ОК3. ОК6, ОК9

3. Условия проведения промежуточной аттестации

В соответствии с локальными актами и учебным планом изучение дисциплины ОП.02 Техническая механика завершается в форме экзамена, а текущий контроль осуществляется преподавателями в процессе проведения практических занятий и выполнения студентами индивидуальных заданий, подготовки докладов, презентаций .Аттестуются те студенты, которые полностью выполнили объем работ.

Промежуточная аттестация освоенных умений и усвоенных знаний по дисциплине *ОП.02 Техническая механика* осуществляется на зачете. Условием допуска к экзамену является положительная текущая аттестация по практическим работам дисциплины, ключевым теоретическим вопросам дисциплины. Экзамен проводится по разработанным заданиям для промежуточной аттестации. К критериям оценки уровня подготовки обучающегося относятся: уровень освоению обучающимся материала,

предусмотренного учебной программой по дисциплине. Теоретические знания при выполнении практических заданий; уровень сформированности общих компетенций; обоснованность, четкость, краткость изложения ответа при соблюдении принципа полноты его содержания.

Дополнительным критерием оценки уровня подготовки обучающегося может являться результат научно-исследовательской, проектной деятельности.

Время выполнения задания — 40 мин.

Оборудование: справочная литература, калькулятор.

4. Критерии оценивания для промежуточной аттестации

Уровень	Показатели оценки результатов			
учебных				
достижений				
«5»	Оценка «отлично» выставляется обучающемуся,			
	проявившему всесторонние и глубокие знания программного			
	материала и дополнительной литературы, а также творческие			
	способности в понимании, изложении и практическом			
	использовании материала			
«4»	Оценка «хорошо» ставится обучающемуся, проявившему			
	полное знание программного материала, освоившему			

	основную рекомендательную литературу, показавшему
	стабильный характер знаний и умений и способному к их
	самостоятельному применению и обновлению в ходе
	последующего обучения и практической деятельности
«3»	Оценка «удовлетворительно» ставится обучающемуся,
	проявившему знания основного программного материала в
	объеме, необходимом для последующего обучения и
	предстоящей практической деятельности, знакомому с
	основной рекомендованной литературой, допустившему
	неточности в ответе на экзамене, но обладающему
	необходимыми знаниями и умениями для их устранения при
	корректировке со стороны экзаменатора
«2»	Оценка «неудовлетворительно» ставится обучающемуся,
	обнаружившему существенные пробелы в знании основного
	программного материала, допустившему принципиальные
	ошибки при применении теоретических знаний, которые не
	позволяют ему продолжить обучение или приступить к
	практической деятельности без дополнительной подготовки
	по данной дисциплине

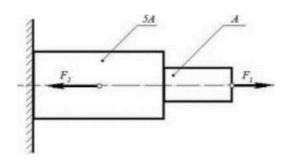
Перечень вопросов и типовых практических заданий для подготовки к зечету по дисциплине ОП.02 Техническая механика для обучающихся по специальности 23.02.07 Техническое обслуживание и ремонт двигателей, систем и агрегатов автомобилей

Теоретические вопросы

- 1. Что такое сила? Охарактеризуйте эту физическую величину и единицу ее измерения в системе СИ.
 - 2. Перечислите и охарактеризуйте основные аксиомы статики.
- 3. Что такое «эквивалентная», «равнодействующая» и «уравновешивающая» система сил?
- 4. Теорема о равновесии плоской системы трех непараллельных сил и ее доказательство.
- 5. В чем разница между распределенной и сосредоточенной нагрузкой? Что такое «интенсивность» плоской системы распределенных сил и в каких единицах она измеряется?
- 6. Что такое «плоская система сходящихся сил»? Определение равнодействующей плоской системы сил геометрическим и графическим методом.
- 7. Сформулируйте условия равновесия плоской системы произвольно расположенных сил.
- 8. Что такое момент силы относительно точки и в каких единицах (в системе СИ) он измеряется? Что такое момент пары сил и какие пары сил считаются эквивалентными?
 - 9. Сформулируйте основные свойства пары сил в виде теорем.
- 10. Сформулируйте и докажите теорему о сложении пар сил. Сформулируйте условие равновесия плоской системы пар.
- 11. Сформулируйте и докажите теорему о приведении системы произвольно расположенных сил к данному центру. Что такое главным момент плоской системы произвольно расположенных сил?
- 12. Перечислите свойства главного вектора и главного момента системы произвольно расположенных сил.
- 13. Сформулируйте теорему о моменте равнодействующей системы сил (теорема Вариньона).
- 14. Сформулируйте три основных закона трения скольжения (законы Кулона).
- 15. Что такое коэффициент трения скольжения? От чего зависит его величина?
 - 16. Сформулируйте условия равновесия пространственной системы

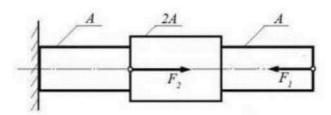
методы его нахождения.

- 18. Дайте определение абсолютному и относительному движению. Что такое траектория точки?
- 19. Перечислите и охарактеризуйте способы задания движения точки.
- 20. Что такое скорость точки? Какими единицами (в системе СИ) она измеряется и какими параметрами характеризуется? Что такое средняя и истинная скорость точки?
- 21. Что такое ускорение точки? Какими единицами (в системе СИ) оно измеряется и какими параметрами характеризуется? Что такое среднее и истинное ускорение точки?
- 22. Дайте определение нормального и касательного ускорения. Сформулируйте теорему о нормальном и касательном ускорении.
- 23. Перечислите и охарактеризуйте виды движения точки в зависимости от величины ее касательного и нормального ускорения.
- 24. Дайте определение и поясните сущность поступательного, вращательного, плоскопараллельного и сложного движения твердого тела.
 - 25. Перечислите основные законы динамики и поясните их смысл.
- 26. Сформулируйте принцип независимости действия сил и поясните его смысл. Назовите две основные задачи динамики.
- 27. Сформулируйте и поясните сущность метода кинетостатики для решения задач динамики (принцип Д'Аламбера).
- 28. Что такое работа силы? Какими единицами (в системе СИ) она измеряется?
- 29. Сформулируйте теорему о работе силы тяжести и поясните ее сущность.
- 30. Что такое мощность силы? Какими единицами (в системе СИ) она измеряется?
- 31. Что такое энергия? Дайте определение и поясните сущность коэффициента полезного действия.
- 32. Сформулируйте закон сохранения механической энергии и поясните его смысл.
- 33. Перечислите основные задачи науки о сопротивлении материалов. Что такое прочность, жесткость, устойчивость?
- 34. Перечислите основные гипотезы и допущения, принимаемых в расчетах сопротивления материалов и поясните суть. Сформулируйте принцип Сен-Венана.
- 35. Перечислите основные виды нагрузок и деформаций, возникающих в процессе работы машин11и сооружений.

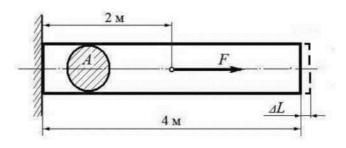

- 36. В чем заключается метод сечений, используемый при решении задач теоретической механики и сопротивления материалов?
- 37. Какие силовые факторы могут возникать в поперечном сечении бруса и какие виды деформаций они вызывают? Что такое эпюра?
- 38. Что такое напряжение и в каких единицах оно измеряется? В чем принципиальное отличие напряжения от давления?
- 39. Сформулируйте гипотезу о независимости действия сил (принцип независимости действия сил) и поясните ее сущность. Сформулируйте закон Гука при растяжении и сжатии и поясните его смысл. Что такое модуль продольной упругости?
- 40. Опишите зависимость между продольной и поперечной деформациями при растяжении и сжатии. Что такое коэффициент Пуассона?
- 41. Сформулируйте условие прочности материалов и конструкций при растяжении и сжатии, представьте его в виде расчетной формулы. Что такое коэффициент запаса прочности?
- 42. Сформулируйте условие прочности материалов и конструкций при сдвиге, представьте его в виде расчетной формулы. Что такое срез (скалывание)?
- 43. Сформулируйте закон Гука при сдвиге и поясните его сущность. Что такое модуль упругости сдвига (модуль упругости второго рода)?
- 44. Что такое полярный момент инерции плоской фигуры? Какими единицами системы СИ он измеряется?
- 45. Что такое осевой момент инерции плоской фигуры? Какими единицами системы СИ он измеряется? Что такое центральный момент инерции?
- 46. Какие деформации и напряжения в сечениях бруса возникают при кручении? Что такое полный угол закручивания и относительный угол закручивания сечения?
- 47. Сформулируйте условие прочности бруса при кручении. Приведите расчетную формулу на прочность при кручении и поясните ее сущность.
- 48. Что такое чистый изгиб, прямой изгиб, косой изгиб? Какие напряжения возникают в поперечном сечении бруса при чистом изгибе?
- 49. Сформулируйте условие прочности балки (бруса) при изгибе. Приведите расчетную формулу и поясните ее сущность.
- 50. Что такое продольный изгиб? Приведите формулу Эйлера для определения величины критической силы при продольном изгибе и поясните ее сущность.

- 51. Что такое критерий работоспособности детали? Назовите основные критерии работоспособности и расчета деталей машин.
- 52. Перечислите наиболее распространенные в машиностроении типы разъемных и неразъемных соединений деталей.
- 53. Достоинства и недостатки клепаных соединений. Перечислите основные типы заклепок по форме головок. Как производится расчет на прочность клепаных соединений?
- 54. Достоинства и недостатки сварочных соединений. Виды сварки. Как производится расчет на прочность сварочных соединений?
- 55. Классификация и основные типы резьбы. Как производится расчет на прочность резьбовых соединений?
- 56. Что такое механическая передача? Классификация механических передач по принципу действия.
- 57. Основные кинематические и силовые соотношения в механических передачах. Что такое механический КПД передачи, окружная скорость, окружная сила, вращающий момент, передаточное число?
- 58. Классификация зубчатых передач. Достоинства и недостатки зубчатых передач.
- 59. Основные элементы и характеристики зубчатого колеса (шестерни). Что такое делительная окружность и модуль зубьев? Перечислите способы изготовления зубьев зубчатых колес. Что такое модуль зубьев?

3.1. Задания для промежуточной аттестации по дисциплине


БИЛЕТ № 1

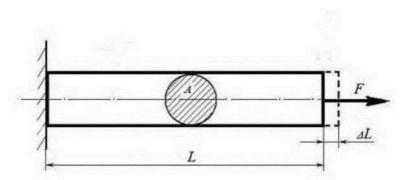
- 1. Что такое сила? Охарактеризуйте эту физическую величину и единицу ее измерения в системе СИ.
 - 2. Дайте определение нормального и касательного ускорения.
- 3. *Задача*: При помощи эпюры напряжений определить наиболее напряженный участок двухступенчатого круглого бруса, нагруженного продольными силами F1 и F2.


Сила F1	Сила F2	Площадь сечения А
20 кН	80 кН	0,1 м2

- 1. Перечислите и охарактеризуйте основные аксиомы статики.
- 2. Сформулируйте и поясните сущность метода кинетостатики для решения задач динамики (принцип Д'Аламбера).
- 3. *Задача*: Ступенчатый брус нагружен подольными силами P1 и F2. Построить эпюру нормальных напряжений в сечениях бруса и указать наиболее напряженный участок. Вес бруса не учитывать.

Сила F1	Сила F2	Площадь сечения
		A
10 кН	25 кН	0,2 м2

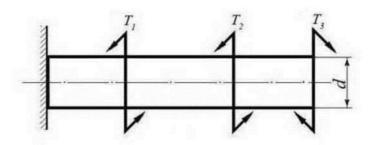
- 1. Что такое «эквивалентная», равнодействующая», «уравновешивающая» система сил?
 - 2. Что такое работа силы? Какими единицами (в системе СИ) она измеряется?
- 3. **Задача:** Используя закон Гука, найти удлинение ΠL однородного круглого бруса, если известно, что он изготовлен из алюминиевого сплава, имеющего модуль упругости E
 - = **0,4** ***105 МПа**. Вес бруса не учитывать.



Сила F	Площадь сечения А
<i>200</i> кН	0,01 м2

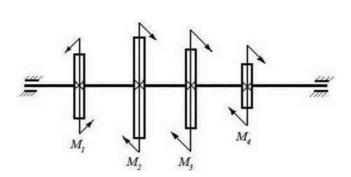
БИЛЕТ № 4

- 1. Дайте определение и поясните сущность поступательного, вращательного, плоскопараллельного и сложного движения твердого тела.
- 2 Перечислите основные виды нагрузок и деформаций, возникающих в процессе работы машин и сооружений.


33адача: Однородный брус длиной L и поперечным сечением площадью A нагружен растягивающей силой F. Используя закон Гука, найти удлинение бруса JL, если известно, что он изготовлен из стального сплава,

имеющего модуль упругости $E=2,0*10^5\ M\Pi a$. Вес бруса не учитывать.

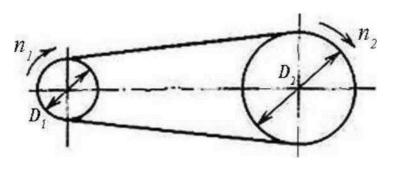
Сила F	Площадь сечения А	Длина бруса $oldsymbol{L}$
<i>500</i> кН	0,05 м2	10 м


- 1. Перечислите и охарактеризуйте виды движения точки в зависимости от величины ее касательного и нормального ускорения.
- 2. Что такое напряжение и в каких единицах оно измеряется?
- 3. *Задача*: Однородный круглый брус жестко защемлен одним концом и нагружен внешними вращающими моментами *T1*, *T2* и *T3*. Построить эпюру крутящих моментов и выполнить проверочный расчет бруса на прочность, при условии, что предельно допустимое касательное

напряжение: $[m] = 30 \ M\Pi a$. При расчете принять момент сопротивления кручению круглогобруса ^2~ θ '2^3^______

Вращающий момент	Вращающий момент	Вращающий момент	Диаметр бруса d
<i>T1</i>	<i>T2</i>	<i>T3</i>	
30 Нм	40 Нм	30 Нм	0,02 м

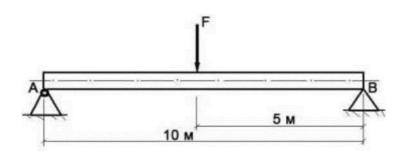
- **1.** Что такое момент силы относительно точки и в каких единицах (в системе СИ) он измеряется? Что такое момент пары сил и какие пары сил считаются эквивалентными?
- **2.** Что такое напряжение и в каких единицах оно измеряется? В чем принципиальное отличие напряжения от давления?
- 3. Задача: Однородный круглый вал нагружен вращающими моментами M1, M2, M3 и M4. Построить эпюру крутящих моментов в сечениях вала и определить наиболее напряженный участок. С помощью формулы $M\kappa p \sim 0.2 \ \ [m]$ определить минимальный допустимый диаметр вала d из условия прочности.



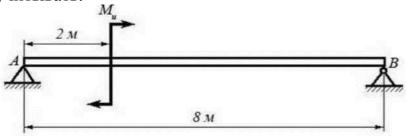
[T]	M1	M2	М3	M4
30 МПа	160 Нм	<i>50</i> Нм	80 Нм	<i>30</i> Нм

- 1. Что такое механическая передача? Классификация механических передач по принципу действия.
- 2. Какие силовые факторы могут возникать в поперечном сечении бруса и какие виды деформаций они вызывают? Что такое эпюра?

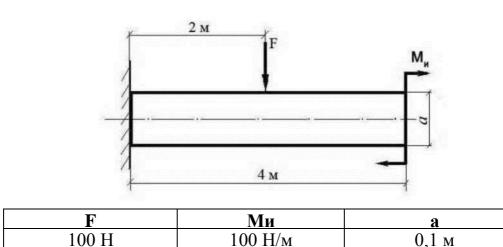
3. **Задача:**


Определите число оборотов в минуту n_2 ведомого вала ременной передачи, если известно, что ведущий вал вращается со скоростью $n_1 = 5$ оборотов в секунду, а диаметры ведомого и ведущего валов находятся в соотношении: $D_2/D_1 = 2$.

БИЛЕТ № 8


- 1. Что такое ускорение точки? Какими единицами (в системе СИ) оно измеряется и какими параметрами характеризуется? Что такое среднее и истинное ускорение точки?
- 2. В чем заключается метод сечений, используемый при решении задач теоретической механики и сопротивления материалов?
- 3. *Задача:* Брус постоянного сечения опирается на две опоры, одна из которых шарнирная, вторая угловая (ребро). В середине бруса приложена поперечная изгибающая сила $F = 200 \ H$. Построить эпюру

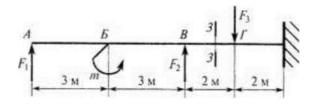
изгибающих моментов и показать наиболее нагруженное сечение бруса. Вес бруса не учитывать.



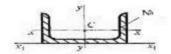
БИЛЕТ № 9

- 1. Что такое скорость точки? Какими единицами (в системе СИ) она измеряется и какими параметрами характеризуется? Что такое средняя и истинная скорость точки?
- 2. Перечислите основные виды нагрузок и деформаций, возникающих в процессе работы машин и сооружений.
- 3. *Задача:* Брус постоянного сечения опирается на две опоры, одна из которых угловая (ребро), вторая шарнирная. Брус нагружен изгибающим моментом $Mu = 160 \ Hm$. Построить эпюру изгибающих моментов и показать наиболее нагруженное сечение бруса. Вес бруса не учитывать.

- 1. Дайте определение центра тяжести тела и опишите основные методы его нахождения
- 2. Сформулируйте закон Гука при растяжении и сжатии и поясните его смысл. Что такое модуль продольной упругости?
- 3. *Задача:* Построить эпюру изгибающих моментов и выполнить расчет квадратного бруса на прочность, при условии, что предельно допустимое нормальное напряжение при изгибе: [o] < 100 МПа. Вес бруса не учитывать.

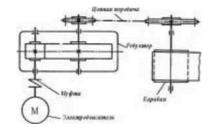


- 1. Сформулируйте условия равновесия пространственной системы произвольно расположенных сил.
- 2. Дайте определение абсолютному и относительному движению. Что такое траектория точки?
- 3. **Задача:** В опасном сечении бруса действуют изгибающий момент 540 Н-м и крутящий момент 200 Н-м. Проверить прочность бруса, если его диаметр 40 мм, а допускаемое напряжение 160 МПа. Расчет провести по гипотезе энергии формоизменения.


БИЛЕТ № 12

- 1. Дайте определение центра тяжести тела и опишите основные методы его нахождения.
- 2. Сформулируйте условие прочности материалов и конструкций при растяжении и сжатии, представьте его в виде расчетной формулы. Что такое коэффициент запаса прочности?
 - 3. **Задача:**

Рассчитать изгибающий момент в сечении 3-3. Каждая из сил равна 20кH, Момент т=60кH


- **1.** Дайте определение абсолютному и относительному движению. Что такое траектория точки?
- **2.** Сформулируйте условие прочности материалов и конструкций при сдвиге, представьте его в виде расчетной формулы. Что такое срез (скалывание)?
- **3. Задача:** Рассчитать осевой момент инерции швеллера №12 относительно оси, проходящей через его основание

БИЛЕТ № 14

- 1. Перечислите и охарактеризуйте способы задания движения точки.
- 2. Сформулируйте закон Гука при сдвиге и поясните его сущность. Что такое модуль упругости сдвига (модуль упругости второго рода)? Задача:. Определите КПД (побщ) изображенного на рисунке привода, если

известны КПД входящих в него передач: $\Pi_{\text{муфты}} = 0.98$, $\Pi_{\text{редуктора}} = 0.96$, $\Pi_{\text{цепной передачи}} = 0.97$, $\Pi_{\text{барабана}} = 0.98$. Какова будет мощность на валу барабана, если мощность электродвигателя N = 4 кВт?

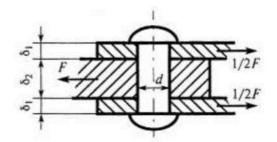
БИЛЕТ № 15

- **1.** Что такое скорость точки? Какими единицами (в системе СИ) она измеряется и какими параметрами характеризуется? Что такое средняя и истинная скорость точки?
- **2.** Что такое полярный момент инерции плоской фигуры? Какими единицами системы СИ он измеряется?
- 3. Задача: Для изображенной на схеме передачи определить вращающий момент T_2 на ведомом валу.

Исходные данные:

Мощность на ведущем валу Р1 = 8 кВт;

Угловая скорость ведущего вала $\mathbf{u}_1 = 40$ рад/сек Коэффициент полезного действия передачи $\mathbf{n} = 0.97$ Передаточное число передачи $\mathbf{u} = 4$.

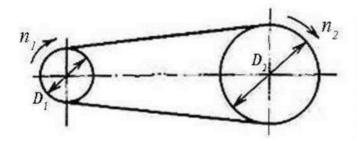

БИЛЕТ № 16

- 1. Что такое ускорение точки? Какими единицами (в системе СИ) оно измеряется и какими параметрами характеризуется? Что такое среднее и истинное ускорение точки?Основные элементы и характеристики зубчатого колеса (шестерни).
- 2. Что такое делительная окружность и модуль зубьев? Перечислите способы изготовления зубьев зубчатых колес. Что такое модуль зубьев?

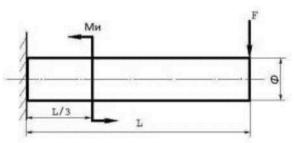
3. **Задача:**

Из расчета на срез заклепочного соединения определить необходимое количество заклепок, если

F=380кH; [т_{ср}]=100 МПа; [С_{см}]=240 МПа;



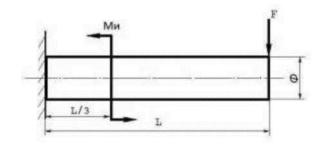
БИЛЕТ № 17


- 1. Дайте определение нормального и касательного ускорения. Сформулируйте теорему о нормальном и касательном ускорении.
- 2. Что такое механическая передача? Классификация механических передач по принципу действия.

3. **Задача:**

Определите число оборотов в минуту n_2 ведомого вала ременной передачи, если известно, что ведущий вал вращается со скоростью $n_1 = 5$ оборотов в секунду, а диаметры ведомого и ведущего валов находятся в соотношении: $D_2/D_1 = 2$.

- 1. Перечислите и охарактеризуйте виды движения точки в зависимости от величины ее касательного и нормального ускорения.
- 2. Классификация и основные типы резьбы. Как производится расчет на прочность резьбовых соединений?
- 3. *Задача:* Построить эпюру изгибающих моментов и выполнить расчет бруса на прочность, при условии, что предельно допустимое

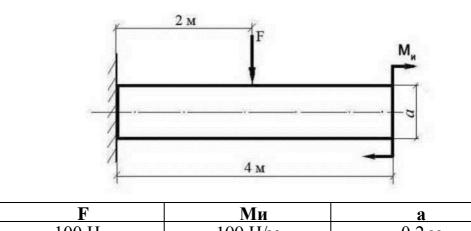


нормальное напряжение при изгибе: [o] < yчитывать.

100 МПа. Вес бруса не

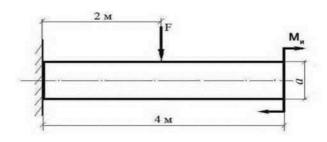
Изгибающий	Поперечная сила	Длина бруса	Диаметр бруса
момент Ми	F	L	Φ
25 Hm	250 H	14 м	10 см

- 1. Дайте определение и поясните сущность поступательного, вращательного, плоскопараллельного и сложного движения твердого тела.
- 2. Достоинства и недостатки сварочных соединений. Виды сварки. Как производится расчет на прочность сварочных соединений?
- 3. *Задача*: Построить эпюру изгибающих моментов и выполнить расчет бруса на прочность, при условии, что предельно допустимое нормальное напряжение при изгибе: [o] < 100 МПа. Вес бруса не учитывать.



Изгибающий	Поперечная сила	Длина бруса	Диаметр бруса
момент М	$oldsymbol{F}$	L	Φ
Mu			
25 Нм	250 H	16 м	12 см

- 1. Перечислите основные законы динамики и поясните их смысл.
- 2. Основные кинематические и силовые соотношения в механических передачах. Что такое механический КПД передачи, окружная скорость, окружная сила, вращающий момент, передаточное число?
- 3. *Задача* Через 5 секунд движения под действием постоянной силы материальная точка приобрела скорость 15 м/с. Сила тяжести 600 Н. Определить величину силы, действующей на точку.


БИЛЕТ № 2 1

- 1. Что такое осевой момент инерции плоской фигуры? Какими единицами системы СИ он измеряется? Что такое центральный момент инерции?
 - 2. Классификация зубчатых передач. Достоинства и недостатки зубчатых передач.
- 3. *Задача*: Построить эпюру изгибающих моментов и выполнить расчет квадратного бруса на прочность, при условии, что предельно допустимое нормальное напряжение при изгибе: $[o] < 100 \text{ M}\Pi a$. Вес бруса не учитывать.

F	Ми	a
100 H	100 Н/м	0,2 м

- Какие деформации и напряжения в сечениях бруса возникают при кручении? Что такое полный угол закручивания и относительный угол закручивания сечения?
- Перечислите наиболее распространенные в машиностроении 2. типы разъемных и неразъемных соединений деталей.
- Задача: Построить эпюру изгибающих моментов и выполнить расчет квадратного бруса на прочность, при условии, что предельно допустимое нормальное напряжение при изгибе: [о] < 100 МПа. Вес бруса не учитывать.

F	Ми	a
100 H	100 Н/м	0,3 м

- Сформулируйте условие прочности бруса при кручении. Приведите расчетную формулу на прочность при кручении и поясните ее сущность.
- 2. Достоинства и недостатки клепаных соединений. Перечислите основные типы заклепок по форме головок. Как производится расчет на прочность клепаных соединений?

3. *Задача*: При испытании на кручение круглый брус, диаметром 20 мм разрушается при моменте 320 Н-м. Определить разрушающее напряжение. Предел прочности листового металла на срез: [т] = 360 МПа.

БИЛЕТ № 24

- 1. Что такое чистый изгиб, прямой изгиб, косой изгиб? Какие напряжения возникают в поперечном сечении бруса при чистом изгибе?
- 2. Что такое «плоская система сходящихся сил»? Определение равнодействующей плоской системы сил геометрическим и графическим методом.
- 3. *Задача:* При испытании на кручение круглый брус, диаметром 20 мм разрушается при моменте 320 Н-м. Определить разрушающее напряжение. Предел прочности листового металла на срез: [т] = 360 МПа.

БИЛЕТ № 25

- 1. Что такое критерий работоспособности детали? Назовите основные критерии работоспособности и расчета деталей машин.
- 2. Сформулируйте условие прочности балки (бруса) при изгибе. Приведите расчетную формулу и поясните ее сущность.
- 3. *Задача*: Определить удлинение стального стержня длиной 1 м нагруженного силой 120 кH; форма поперечного сечения стержня швеллер № 12;модуль упругости материала $2-10^5$ МПа.

БИЛЕТ № 26

1Дайте определение нормального и касательного ускорения.

Сформулируйте теорему о нормальном и касательном ускорении.

2Что такое механическая передача? Классификация механических передач по принципу действия.

33адача: Определить силу давления человека на пол кабины лифта в случае, если лифт поднимается с ускорением a=3 м/с². Вес человека O=700 H, $\delta=9,81$ м/с²

- 1. Перечислите и охарактеризуйте виды движения точки в зависимости от величины ее касательного и нормального ускорения.
- 2. Классификация и основные типы резьбы. Как производится расчет на прочность резьбовых соединений?
 - 3. *Задача*: Для движения, закон которого $\phi = 132 + b$, определить угловое ускорение в момент t = 10 с.

- 1. Дайте определение и поясните сущность поступательного, вращательного, плоскопараллельного и сложного движения твердого тела.
- 2 Перечислите основные виды нагрузок и деформаций, возникающих в процессе работы машин и сооружений.
 - 3. *Задача:*. Колесо вращается по закону $\phi = 0.32\pi$. Определить угловое ускорение колеса в момент t=3 с